Светодиодная подсветка экрана: Что такое светодиодная (LED) подсветка? Ответ эксперта

Содержание

Что такое светодиодная (LED) подсветка? Ответ эксперта

LED-подсветка дисплеев – это один из многочисленных способов применения светодиодов. В промышленных масштабах её стали использовать начиная с 2008 года. На сегодняшний день светодиоды монтируют в подавляющее большинство жидкокристаллических (LCD) экранов: телевизоров, мониторов, мобильных устройств.

С 2008 года подсветка на светодиодах активно совершенствовалась и улучшалась. В данной статье поговорим о том, что такое led подсветка, какой она бывает и насколько оправдано ее внедрение в электронику.

Немного теории

Ещё 10 лет назад основным источником света в LCD-экранах были люминесцентные лампы типа CCFL, HCFL, которые проигрывали плазменным телевизорам по качеству изображения. Появление белых SMD светоизлучающих диодов с большой светоотдачей, малым энергопотреблением и габаритами в корне изменило ситуацию, благодаря чему появилось новое поколение мониторов.

В магазинах стали активно предлагать LED TV, не объясняя при этом, что на светодиодах выполнена только подсветка, а экран по-прежнему остаётся жидкокристаллическим.

Масштабные рекламные акции и красивые рассказы консультантов о преимуществах светодиодного варианта способствовали резкому росту продаж LED TV и мониторов, благодаря чему на сегодняшний день они имеют полное превосходство над другими видами подсветки.

Типы светодиодной подсветки

С изобретением компактных ультраярких светодиодов, перед производителями стал вопрос: «Как их разместить, чтобы одновременно получить изображение высокого качества и сэкономить?» В поисках ответа появилось несколько типов светодиодной подсветки, среди которых выделяют два основных:

  • торцевая (Edge), именуемая также боковой или краевой;
  • матричная (Direct), собранная на wled или rgb led.

По способу управления свечением также существует два типа подсветки: статическая и динамическая. В первом случае яркость всех светодиодов меняется одинаково независимо от изображения. Во втором случае каждый светодиод или группа индивидуально взаимодействуют с соответствующим участком LCD-матрицы.

Edge

Светодиоды в боковой подсветке располагают одним из способов:

  • по бокам;
  • сверху и снизу;
  • по периметру.

Выбор того или иного способа размещения зависит от размера экрана и технологии производства. В этот тип подсветки устанавливают только белые светодиоды (white LED). Излучаемый ими световой поток проходит через рассеиватель и систему из световодов, освещая, таким образом, весь экран.

Данный метод имеет три важных преимущества, которые обеспечили ему популярность. Низкая себестоимость, достигаемая за счет минимального количества используемых светодиодов и простоты системы управления. Возможность создания ультратонких моделей мониторов с выносным блоком питания, которые за счет рекламы приобрели высокую популярность у покупателей. Малое потребление энергии, что невозможно реализовать в остальных вариациях. По световым характеристикам edge подсветка занимает средние позиции и сильно зависит от качества сборки и применяемой элементной базы.
Но в целом цветопередача сравнима с CCFL технологией. В моделях телевизоров с боковой подсветкой нельзя достичь изображения высокой контрастности по двум причинам. Все светодиоды светят с одной яркостью, одинаково засвечивая тёмные и светлые участки экрана. Световоды, несмотря на свою продуманную конструкцию, не способны обеспечить равномерное распределение света по всей рабочей поверхности.

Direct

Тыльная (матричная) подсветка представляет собой матрицу, собранную из нескольких линеек со светодиодами, распределёнными по всей площади. Такой способ обеспечивает равномерный засвет всей LCD-панели, а главное позволяет реализовать динамическое управление. В результате разработчикам удалось достичь высокой контрастности изображения и насыщенности чёрного цвета.

Direct подсветку реализуют двумя способами. Первый, наиболее распространённый, собирают на белых LED или WLED, что в принципе одно и то же. Она может быть как статической, так и динамической, что зависит от модели телевизора.

Второй предполагает использовать вместо белых – RGB светодиоды. С их помощью удаётся регулировать не только яркость, но и задавать любой цвет из всего видимого спектра. За счёт высокой скорости переключения светодиоды прекрасно отрабатывают подаваемый сигнал и успевают за быстро меняющейся картинкой на экране. RGB-подсветку строят только по динамическому принципу.

Дисплеи с матричной подсветкой выделяются отличной контрастностью и цветопередачей по всей площади экрана. Это главный их плюс, который перекрывают сразу несколько недостатков, а именно:

  • высокая стоимость;
  • большое энергопотребление, сравнимое с CCFL технологией;
  • толщина корпуса более одного дюйма.

При выходе из строя одного из светодиодов гаснет вся линейка. На экране это явление отразится в виде затемнения некоторой области. Самостоятельно заменить перегоревший элемент на аналогичный не получится, так как найти точную копию с такой же линзой практически невозможно. В итоге замене подлежит вся линейка.

О недостатках для здоровья

Сама по себе LED-подсветка независимо от способа реализации имеет несколько весомых недостатков, которые оказывают влияние не на качество изображения, а на зрение. В первую очередь – это функция широтно-импульсного модулирования. С её помощью пользователь регулирует яркость и, тем самым, ухудшает своё здоровье. Суть проблемы заключается в мерцании светодиодов с частотой выше 80 Гц, что проявляется во время снижения яркости. Зрительно такое мерцание человеческим глазом не фиксируется, но оно непрерывно раздражает нервные окончания, вызывая головную боль и усталость в глазах.

Во время просмотра телевизионных передач данный недостаток не доставляет особого дискомфорта из-за большого расстояния между зрителем и экраном, а также низкой концентрации внимания. А вот пользователи ПК и ноутбуков с LED-подсветкой оказались в тупиковой ситуации. С одной стороны, когда яркость монитора 100%, функция широтно-импульсной модуляции (ШИМ) отключена, но сильно страдает сетчатка глаза. С другой стороны, длительная работа с документами на пониженной яркости комфортнее воспринимается глазами, но теперь негатива добавляет ШИМ.

Кроме этого существуют и другие недостатки, ухудшающие зрение, проявление которых в той или иной степени зависит от технологии производства дисплеев. Например, завышенное излучение светодиодов в области близкой к ультрафиолетовому спектру.

Тем, кому дорого зрение, следует остановить свой выбор на профессиональной серии мониторов с CCFL лампами, которые по-прежнему выпускают для работы с изображениями. Они имеют высокий коэффициент цветопередачи и стоят меньше, чем продукция, собранная на RGB LED.

Несмотря на наличие недостатков, производители электронной техники не перестанут использовать led подсветку в своих устройствах, а крупные компании по-прежнему будут рекламировать так называемые LED TV. Потому что маркетинговые цели по-прежнему имеют высокий приоритет. Остаётся надеяться, что в ближайшем будущем массовое производство мониторов оснастят подсветкой более высокого качества, работающей на частоте безопасной для глаз.

LED подсветка монитора своими руками / Хабр


Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.


Разбираем монитор

На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса

2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:

Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.

4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):

5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:

По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе.
Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке — т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:

И блок с подсветкой отдельно:

Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».

Вот собственно и все — мы разобрали монитор.
Подсветка светодиодной лентой

Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 — 120 светодиодов на метр. Первое что оказалось — ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) — 7 мм (на самом деле бывают лампы подсветки двух стандартов — 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано — сделано:

Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т. е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится — прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.

On — сигнал с платы управления на включение подсветки (+5V)
Dim — ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):

В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off — нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:

Расчет выходного напряжения для LM2941 производится по формуле:

Vout = Vref * (R1+R2)/R1

где Vref = 1. 275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:

R2=R1*(Vout/Vref-1)

Максимальное необходимое нам напряжение для ленты — 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится — около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм — 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 — 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).

Монтаж светодиодной ленты

Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):

Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):

После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:


Питание и сигнал управления On заводились с платы блока питания:

Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:

Pd = (Vin-Vout)*Iout +Vin*Ignd

Для моего случая составляет Pd = (13. 6-13)*0.7 +13.6*0.006 = 0.5 Ватт поэтому было решено обойтись самым маленьким радиатором для LM2941 (посажен через диэлектрическую прокладку т.к. от земли он в LM2941 не изолирован).
Окончательная сборка показала вполне себе работоспособность конструкции:

Из достоинств:

  • Используется стандартная светодиодная лента
  • Простая плата управления

Из недостатков:
  • Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
  • Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
  • Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)

Вполне хороший, простой и бюджетный вариант ремонта подсветки. Вполне комфортно смотреть фильмы или использовать монитор в качестве кухонного телевизора, но для каждодневной работы наверное не подойдет.
Регулировка яркости с помощью ШИМ

Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:

Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)
Более плотная LED подсветка

Для решения проблемы недостаточной яркости (а заодно и равномерности) подсветки было решено поставить больше светодиодов и чаще. Поскольку оказалось что покупать светодиоды поштучно дороже чем купить 1.5 метра ленты и выпаять их оттуда был выбран более экономный вариант (выпаивать светодиоды из ленты).
Сами светодиоды 3528 разместились на 4-х полосках 6 мм шириной и 238 мм длиной по 3 светодиода последовательно в 15 параллельных сборках на каждой из 4-х полосок (разводка плат для светодиодов прилагается). После припайки светодиодов и проводов получается следующее:


Полоски закладывается по две вверху и внизу проводами к краю монитора в стык в центре:


Номинальное напряжение на светодиодах 3.5В (диапазон от 3.2 до 3.8 В), так что сборка из 3-х последовательных светодиодов должна питаться напряжением порядка 10.5В. Так что параметры регулятора нужно пересчитать:

Максимальное необходимое нам напряжение для ленты — 10.5В. Т.е. максимальное значение R2 = 1000*(10.5/1.275-1) = 7.23кОм. Минимальное напряжение при котором сборка из светодиодов еще хоть как-то светится — около 4.5 вольт, т.е. минимальное значение R2 = 1000*(4.5/1.275-1) = 2.53кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 7. 23кОм — 2.53кОм = 4.7кОм, а RV2 выставляем примерно в 7.23-4.7 = 2.53 кОм и регулируем в собранной схеме для получения 10.5В на выходе LM2941 при максимальном сопротивлении RV1.
В полтора раза больше светодиодов потребляют 1.2А тока (номинально), поэтому рассеиваемая мощность на LM2941 будет равна Pd = (13.6-10.5)*1.2 +13.6*0.006 = 3.8 Ватт, что уже требует более солидного радиатора для отвода тепла:

Собираем, подключаем, получаем гораздо лучше:

Достоинства:
  • Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
  • Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
  • Все еще простая и дешевая плата управления

Недостатки:
  • Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
  • LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса
Плата управления на основе Step-down регулятора

Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:

Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:

Vout=Vref*(1+R2/R1)

где Vref = 1.23V. При заданном R1 можно получить R2 по формуле:

R2=R1*(Vout/Vref-1)

В расчетах R1 эквивалентно R4 в схеме, а R2 эквивалентно RV1+RV2 в схеме. В нашем случае для регулировки напряжения в диапазоне от 7.25В до 10.5В возьмем R4=1.8кОм, переменный резистор RV1=4.7кОм а подстроечный резистор RV2 на 10кОм с начальным приближением в 8.8кОм (после сборки схемы лучше всего выставить его точное значение измеряя напряжение на выходе LM2576 при максимальном сопротивлении RV1).
Для этого регулятора решил сделать плату (размеры значения не имели, т.к. в мониторе достаточно место для монтажа даже габаритной платы):

Плата управления в сборе:

После монтажа в мониторе:

Все в сборе:

После сборки вроде все работает:

Итоговый вариант:

Достоинства:

  • Достаточная яркость
  • Step-down регулятор не греется и не греет монитор
  • Нет ШИМ а значит ничего не моргает ни с какой частотой
  • Аналоговая (ручная) регулировка яркости
  • Нет ограничений на минимальную яркость (для тех кто любит работать по ночам)

Недостатки:
  • Немного смещен баланс белого в сторону зеленых тонов (но не сильно)
  • При малой яркости (очень малой) видна неравномерность в свечении светодиодов разных сборок из-за разброса параметров

Варианты улучшения:

  • Баланс белого регулируется как в настройках монитора, так и в настройках почти любой видеокарты
  • Можно попробовать поставить другие светодиоды, которые не будут заметно сбивать баланс белого
  • Для исключения неравномерного свечения светодиодов при малой яркости можно использовать: а) ШИМ (регулировать яркость с помощью ШИМ всегда подавая номинальное напряжение) или б) соединить все светодиоды последовательно и питать их регулируемым источником тока (если соединить последовательно все 180 светодиодов, то понадобится 630В и 20мА), тогда через все светодиоды должен проходить один и тот же ток, а на каждом будет падать свое напряжение, яркость регулируется изменением тока а не напряжения.
  • Если хочется сделать схему на основе ШИМ для LM2576 можно использовать схему И-НЕ на входе On/Off этого Step-down регулятора (по аналогии с приведенной схемой для LM2941), но лучше поставить диммер в разрыв минусового провода светодиодов через logic-level mosfet

По ссылке можно скачать:

  • AOC2216Sa Service Manual
  • LM2941 и LM2576 datasheets
  • Схемы регулятора на LM2941 в формате Proteus 7 и PDF
  • Разводка платы для светодиодов в формате Sprint Layout 5.0
  • Схема и разводка платы регулятора на LM2576 в формате Proteus 7 и PDF

Светодиодная подсветка экрана | Led-Russia.com

Светодиодный прожектор VR 100

Подсветка Led экрана.

Первые выпускаемые модели жидкокристаллических телевизоров оснащались подсветкой от люминесцентных ламп, и поэтому они проигрывали в качестве изображения своим плазменным собратьям. Вскоре была разработана новая методика повышения контрастности изображения ЖК-устройств, которая называется «подсветка led экрана». В основу её лёг метод подсветки экранной матрицы светодиодами, сегодня производители ЖК телевизоров и дисплеев практически во всех, новых моделях техники используют светодиодную подсветку.

Используемая, в современных устройства, светодиодная подсветка экрана бывает нескольких основных типов:

1. Полный массив подсветки. Этот метод предусматривает расположение диодов по всей площади экрана за рабочей матрицей.

2. Боковая подсветка. В устройствах данного типа светодиоды располагаются по контуру устройства, при этом специальные световоды передают свет по всей площади матрицы. Именно этой технологии мы обязаны значительным сокращением толщины ЖК устройств.

Особой «фишкой» такого рода подсветки экранов, можно считать различные технологии локального затемнения, которые в зависимости от характера изображения уменьшают яркость некоторых диодов группы, что делает «картинку» телевизоров ещё ярче и контрастнее.  

К слову, распространение технологии на основе светодиодов получили не только в сфере электроники. Диоды широко применяются в освещении, архитектурной подсветке городских зданий и архитектурных объектов, дизайне интерьеров (например, светодиодная подсветка натяжных потолков, ниш или ступеней), создании информационных панелей и наружной рекламы, светодиодных экранов и глобальных комплексов диодной подсветки, которые покрывают всё здание и называются  медиафасадами. Примеры всех этих видов устройств и конструкций производства ООО "Завод Светодиодной Продукции" вы можете найти на нашем сайте. 

Светодиодная подсветка Wled и LCD

В последние годы ЖКД (LCD) дисплеи или дисплеи на жидких кристаллах, стали все чаще использоваться в производстве телевизоров и компьютерных мониторов, заменяя большие электронно-лучевые трубки (CRT), и при этом предоставляя пользователю доступ к изображению высокой четкости с превосходным цветом, контрастностью и яркостью. Между тем, не все мониторы ЖКД являются одинаковыми. В частности у мониторов WLED есть некоторые важные различия, которые выделяют их в отдельную категорию.

Обозначение

WLED расшифровывается как белый светоизлучающий диод. Эта технология является общим источником подсветки для цифровых мониторов, и изготовители дисплеев используют термины WLED и LED взаимозаменяемо. Понятие ЖКД (LCD) с другой стороны, обозначает дисплеи на жидких кристаллах, что является категорией, которая включает все типы LCD мониторов и телевизоров, включая те, которые используют подсветку WLED. Жидкокристаллические экраны LCD, которые не используют технологию WLED относятся к категории CCFL. CCFL расшифровывается как электролюминесцентная лампа с холодным катодом. Однако, эти дисплеи всегда имеют название LCD. 

Принцип работы

Принцип работы как экранов с подсветкой CCFL, так и WLED, в сущности, является аналогичным. Пиксели LCD фактически не испускают свет. Вместо этого они действуют как прерыватели, блокируя часть спектра света, вырабатываемого лампой подсветки. Зрители видят только цвет, которому пиксель позволяет проходить, хотя подсветка всегда испускает только чистый белый свет.

Стоимость


Экраны WLED стоят больше, чем экраны с технологией подсветки CCFL. Некоторые изготовители телевизоров используют светодиодную подсветку только для высокопроизводительных моделей, маркируя все другие устройства как LCD. Клиенты могут увидеть панели с подсветкой WLED в различных устройствах, включая компьютерные мониторы высокой четкости HD, телевизоры с плоскими экранами и экраны ноутбуков. Во всех случаях модели WLED стоят больше, чем сопоставимые модели LCD, с типичным различием в несколько сотен долларов.

Потребление энергии

Другим главным преимуществом подсветки WLED является то, что мониторы с этой технологией потребляют более малое количество электроэнергии, чем обычные стандартные жидкокристаллические экраны CCFL. Подсветка монитора требует большого количества энергии для создания света, большая часть которого отфильтровывается прежде, чем он достигает глаз зрителя. Даже когда монитор отображает исключительно белый цвет, приблизительно 95 процентов подсветки блокируется пикселями. Это означает, что даже скромная экономия энергии в WLED в целом приводит к еще меньшему использованию электричества и понижает эксплуатационные расходы.

Другие преимущества

Мониторы WLED имеют несколько других преимуществ перед мониторами LCD для оправдания их стоимости. Мониторы WLED начинают отображать изображение сразу же, как только они получают электроэнергию. Жидкокристаллические экраны LCD, в которых применяются лампы подсветки CCFL, используют подсветку более медленно, постепенно достигая полной яркости. В общем, можно сказать, что мониторы WLED являются также более яркими, обеспечивая более насыщенные цвета и предоставляя более высокие контрастные соотношения. Они могут также быть более тонкими, поскольку светодиоды занимают меньше места, чем лампы подсветки CCFL в обычном мониторе LCD. 

Ремонт LED подсветки телевизора в домашних условиях: LG, Samsung, Philips, Toshiba

Если после включения жидкокристаллической телевизионной панели пользователь слышит звук, но изображение на экране отсутствует, это может свидетельствовать о выходе из строя светодиодной подсветки. Для диагностики и устранения неисправности можно вызвать представителя сервисного центра, но, зная порядок действий, имея запасные детали и необходимый инструмент, можно выполнить ремонт LED подсветки телевизора и своими руками. Правила и алгоритм действий этого процесса – далее в материале.

Причины и признаки неисправной подсветки

Экран телевизора состоит из множества точек – пикселей, расположенных вплотную друг к другу, а чтобы пользователь увидел изображение, на них должен подаваться свет, тогда они «оживают» и формируют картинку. Технология LED в ЖК телевизорах – это новый способ подсветки экрана при помощи светодиодов, пришедший на смену люминесцентным CCFL-лампам. Устройства с LED-подсветкой отличаются великолепной цветопередачей, высокой контрастностью, невероятной четкостью и реалистичностью изображения, низким потреблением электроэнергии и небольшой толщиной.

Типы подсветки

В зависимости от того, как расположены светодиоды, выделяются два типа LED-подсветки:

  • edge (торцевая, боковая) подсветка предполагает расположение светодиодов по левому и правому краю, сверху и снизу или по всему периметру;
  • direct (матричная) подсветка обозначает распределение светодиодов по всей площади матрицы.

При первом типе расположения светодиодов добиться равномерного подсвечивания экранов невозможно. Во втором случае диоды расположены вдоль всей матрицы, благодаря этому обеспечивается равномерная подсветка всего дисплея, а также высочайшая контрастность и насыщенный черный свет.

Причины поломки

Если пользователь включает телеприемник и обнаруживает отсутствие картинки или видео, но звук при этом воспроизводится, это может свидетельствовать о поломке подсветки.

Важно! Чтобы удостовериться в неисправности подсветки, достаточно направить на экран горящий фонарь. Если появится картинка — это подтверждает предположение.

Существует несколько причин, по которым LED-подсветка выходит из строя. Во-первых, может быть повреждена лента диодов. Светодиоды соединены последовательно, а значит, если перестанет работать хотя бы один, погаснет вся полоска. При этом напряжение будет продолжать подаваться. Во-вторых, может быть сломан LED-драйвер. В таком случае на лампы не поступает изображение, поэтому они не загораются.

Иногда телевизор еще с завода поступает с браком. Ведь достаточно всего одного неисправного светодиода, чтобы экран телеприемника не работал. В других ситуациях лампы выгорают по вине пользователя, который устанавливает максимальную яркость экрана — напряжение повышается, светодиоды с ним не справляются и перегорают. В проблеме также может быть виноват магазин, в котором продавцы пытаются привлечь внимание покупателей ярким изображением на экране телевизионной панели.

Выявление неисправности

Чтобы устранить неисправность, необходимо понять, действительно ли лента светодиодов является ее причиной. С этой целью нужно разобрать телеприемник и осмотреть его комплектующие.

Совет! Если пользователь не уверен, что он сможет правильно выполнить все необходимые действия, ему следует обратиться к специалистам, чтобы не рисковать устройством и не допустить ухудшения ситуации.

Для диагностики нужно выполнить частичную разборку телевизионной панели и ряд замеров. Так, телевизор требуется положить вниз экраном на твердую поверхность, например, стол, накрытый покрывалом или простыней, чтобы не допустить повреждения матрицы. Далее следует снять ножку, а затем выкрутить весь крепеж, удерживающий заднюю крышку, и убрать последнюю в сторону. Если она не снимается, нужно отыскать болт, который не выкручен, и удалить его.

Теперь замеры. Сначала нужно проверить напряжение на драйвере. Если на выходе значение равно 220 вольт, это означает, что деталь исправна и подает питание на ленту. Далее нужно таким же образом провести диагностику подсветки. Если она неисправна, значение будет 100 вольт. Для ремонта пользователю потребуется снять матрицу.

На заметку! Обычно в ЖК телевизорах используются специальные светодиодные планки с линзами, обеспечивающие ровную и четкую освещенность матрицы.

Что нужно для устранения поломки

Для устранения неисправности пользователю потребуется инструмент, а также новые светодиоды. Купить светодиодную ленту в сервисном центре не получится — там их не заказывают и не продают. Есть возможность заказать такой товар у фирмы-производителя, но доставка займет очень много времени, да и цена будет слишком высокой. Лучший выход – поменять отдельно неисправные светодиоды.

Совет! Рабочие лампы можно найти на рынках, в ремонтных мастерских, сервисах и т.д. Главное – чтобы они были исправны, поэтому можно приобретать даже перепаянные (с неработающих телеприемников).

На разных моделях одной и той же фирмы может быть различное количество светодиодов. Например, если на телевизоре LG c диагональю 32 дюйма 32LN540V-ZA всего 21 светодиод (3 ряда по 7 ламп), то на 32LB522U эта цифра может быть другой. Кроме того, чем больше диагональ, тем большее количество светодиодов используется для подсветки матрицы. Например, на телевизоре Samsung UE40ES5507K установлено 112 лампочек. Поэтому определить количество элементов в своем телеприемнике можно, только разобрав его.

Разборка телеприемника

Действия по замене светодиодов выполняются одинаково на всех телевизионных панелях, будь то LG, Samsung, Philips, Toshiba или техника другой марки. Перед началом работы следует подготовиться: рядом со столом, на котором лежит телевизор, поставить второй, чтобы положить детали (матрицу, светодиодную ленту, панель). Затем нужно тщательно вымыть руки, чтобы не оставить грязь на матрице или фильтрах, которая после сборки телеприемника может плачевно сказаться на качестве картинки.

Совет! При разборке телевизионной панели нужно очень осторожно обращаться с дешифраторами — любое неосторожное действие может оторвать шлейф.

В любом телевизоре, независимо от приемника, есть три ключевых платы: main, Tcon и адаптер питания. Они легко обнаруживаются сразу после снятия тыльной панели.

Чтобы разобрать телеприемник, нужно:

  • снять и вытащить T-con плату, предварительно выкрутив крепеж и разъединив шлейфы;

  • снять с дешифраторов металлическую защиту, отсоединив боковые крепежи и удалив болты, после чего их удерживать будут лишь крепления из резины;

  • выкрутить болты, удерживающие переднюю рамку, перевернуть телеприемник на тыльную сторону и снять рамку;

  • осторожно перевернуть телевизор, придерживая матрицу;
  • отсоединить резиновые фиксаторы, удерживающие дешифраторы;

  • снять матрицу и убрать в сторону.

Совет! В ходе разборки телеприемника рекомендуется фотографировать устройство перед каждым действием, чтобы в дальнейшем собрать технику без ошибок и не нанести ей еще больший вред.

Устранение неисправности

Чтобы получить доступ к светодиодной ленте, нужно удалить пластиковую рамку, предварительно убрав крепления. Также нужно снять пленки, рассеивающие свет. В телеприемниках с LED-подсветкой светодиоды подключаются последовательно, а значит, если один из них поврежден, остальные гореть не будут. Чтобы устранить поломку, нужно заменить светодиод на новый. Если нет следов подгорания, потребуется проверить каждый по отдельности.

Тестирование планки

Чтобы не тестировать все светодиоды, можно подавать напряжение отдельно на каждую планку. Если лампы на ней целы, она будет светиться. В противном случае нужно прозвонить каждый светодиод на планке. Обычно на ней имеются контакты для подключения мультиметра. Подсоединять щупы следует с соблюдением полярности. При верном подключении целый светодиод светится. Если мультиметр подключен правильно, а лампа не горит или демонстрирует короткое замыкание, это говорит, что она неисправна.

Замена

Чтобы устранить испорченный элемент, нужно снять с него отражающую линзу. Планка закреплена двусторонним скотчем, поэтому для демонтажа нужно прогреть ее феном. Далее следует надежно зафиксировать деталь и прогреть паяльным феном снизу возле светодиода до тех пор, пока не расплавится олово, и лампу не получится отсоединить. Впаивается новый светодиод таким же способом либо очень тонким паяльником.

Важно! Действовать требуется очень осторожно, чтобы не расплавить диод во время нагрева. Если светодиод не подходит по размеру, то минусовую площадку (обычно она больше плюсовой) необходимо аккуратно подрезать, а затем впаять лампу.


Если в процессе работы снимаются линзы, нужно учитывать, что они закреплены компаундом – полимерной смолой, выполняющей роль защиты и изолятора. Отсоединять их следует очень осторожно, а устанавливать на прежнее место — с помощью суперклея и в том же положении, чтобы не нарушить фокусировку.

Существует еще один способ замены, который актуален, когда расплавить испорченный светодиод практически невозможно. Необходимо при помощи ножовки по металлу выпилить неисправную лампу вместе с частями планки по обеим сторонам. Эти же действия нужно выполнить с новой деталью. После этого необходимо снять краску с дорожек на куске со светодиодом и на планке и аккуратно их спаять.

Завершение ремонта

Завершив работы по замене светодиодов, перед полной сборкой телевизионной панели нужно подключить к планкам напряжение и проверить, горит ли лента. Если все лампы исправно функционируют, необходимо восстановить телеприемник в обратном порядке, выполняя все действия максимально осторожно.

Совет! Если пользователь в процессе разбора телевизионной панели делал фотографии, рекомендуется при сборке перед каждым действием с ними сверяться.

После того, как техника собрана, нужно установить ее на исходное место, подключить к сети и включить. Если изображение хорошее, на матрице нет светлых либо темных засветов, а также каких-либо пятен, это говорит о правильно выполненной работе и успешном завершении операции по ремонту LED-подсветки.

Профилактика

Чтобы не допустить повторения неисправности, нужно открыть меню телеприемника, найти в нем яркость подсветки (не нужно путать с яркостью экрана) и выставить этот показатель на 75%.  В этом случае лампы будут функционировать в нормальном режиме, и на них будет поступать обычное (а не повышенное) напряжение, что позволит существенно продлить их срок службы.

Итак, если телевизор не выводит изображение, но звук при этом присутствует, очень часто причина кроется в неисправной LED-подсветке. Для ее ремонта можно прибегнуть к помощи специалиста, но, зная правильный порядок действий и купив новые детали, починить телевизор можно самостоятельно в домашних условиях. Однако если нет уверенности в своих силах и опыта в тонких радиоэлектронных работах, то лучше воспользоваться услугами профессионального мастера, чтобы не усугубить ситуацию.

Самые лучшие телевизоры по мнению покупателей

Телевизор LG 43UK6200 на Яндекс Маркете

Телевизор Sony KD-55XF9005 на Яндекс Маркете

Телевизор LG 49UK6200 на Яндекс Маркете

Телевизор Sony KD-65XF9005 на Яндекс Маркете

Телевизор LG OLED55C8 на Яндекс Маркете

Особенности LED телевизоров с Edge и Direct подсветкой. Ремонт LED подсветки матрицы телевизора UE32F5000AK

Светодиодная Led подсветка - это еще одна характеристика телевизоров и мониторов, которая в последнее время усложняет выбор покупателя, требуя от него лишних раздумий и принятия ответственного решения... Дело в том, что LCD (ЖК) телевизоров становится все больше, а ее типы все время множатся.

Действительно, приобретая телевизор хочется не ошибиться, не купить что-нибудь представляющее вчерашний или позавчерашний день, чем уже скоро нельзя будет пользоваться...

К счастью, больших сложностей в этом вопросе нет, его важность сильно преувеличена - об этом ниже на странице...

Есть хорошее правило: при покупке телевизора рекомендуется меньше уделять внимания названиям используемых технологий, а больше руководствоваться своими впечатлениями от его вида и качества изображения.

При этом, конечно, более современный (и дорогой) ТВ в большинстве случаев будет и лучшего качества.

Наилучшие результаты по качеству изображения на сегодня, пожалуй, дает тип подсветки - Direct (Full) LED. Причем он все время совершенствуется - сейчас в этой технологии может применяться очень большое количество светодиодов, что, естественно, сказывается очень положительно.

Edge LED или его производные тоже показывают все более лучшие характеристики, позволяя к тому же делать ТВ очень тонкими.

В обоих случаях в лучших моделях телевизоров используется еще метод «Локального затемнения» - Local Dimming . В телевизораз LG подсветка с его использованием называется LED plus .

ЖК элементы, из которых строятся LCD панели телевизоров, - сами по себе не произведут изображения, если их не подсветить. Поэтому, тот или иной тип подсвечивания в современных телевизорах обязательно присутствует. При этом следует иметь ввиду, что технологии постоянно совершенствуются, и тип подсвечивания с тем же или похожим названием в следующем году, может по исполнению сильно отличаться от прошлогоднего. К примеру, экраны Full LED теперь выпускаются почти такими же тонкими, что и Edge LED.

Среди типов подсветки телевизоров применявшихся или применяемых SONY можно назвать следующие:

CCFL (Подсветка на флуоресцентных лампах с холодным катодом).

WCG-CCFL (Подсветка широкой цветовой гаммы на флуоресцентных лампах с холодным катодом).

RGB LED, или динамическая rgb led (Обеспечивается цветная подсветка отдельных фрагментов экрана монитора или телевизора. Потенциально очень перспективная технология, поскольку в теории дает возможность подсвечивать нужную область экрана определенным цветом. На практике ее теоретические преимущества по сравнению с другими типами не всегда удается воплотить в жизнь. Подробнее см. ниже на странице).

Full LED. Другое название Direct LED (подсвечивающие диоды располагаются позади экрана равномерно по всей его площади. Это упрощает управление и улучшает качество. Но отрицательно сказывается на толщине экрана.) - Edge LED (Жидкокристаллический экран подсвечивается белыми светодиодами, установленными у него вверху и внизу или по бокам. Позволяет изготавливать очень тонкие Slim-телевизоры).

Dynamic Edge LED (В дополнение применяется технология локального затемнения (Local Dimming), контролирующая объем свечения отдельных групп светодиодов в зависимости от демонстрируемого изображения).

Intelligent Dynamic LED. Другое название Full LED или Direct LED (По сравнению с предыдущими технологиями применяется намного больше белых подсвечивающих светодиодов, расположенных прямо за телеэкраном равномерно по всей его площади и подсвечивающих изображение. Контролируя свечение отдельных блоков светодиодов, система может освещать конкретные участки изображения, оставляя другие темными. Эта технология упрощает управление и улучшает качество, но отрицательно сказывается на толщине экрана.)

Другие производители телевизоров, Samsung, Sharp, LG или Toshiba используют в той или иной степени отличающиеся технологии. Соответственно иное название могут носить и варианты подсветки телевизора (подробнее о технологиях можно почерпнуть массу информации в интернете, но с точки зрения выбора варианта для покупки эта информация не особенно много даст. Важнее, как мы уже говорили, оценить ТВ картинку визуально).

Кстати, Full LED (Intelligent Dynamic LED) от Sony это не то же самое, что full led подсветка в первоначальном понимании в начале развития технологии, когда флуоресцентная ламповая подсветка ЖК-матрицы телевизоров просто заменялась тысячами отдельных светодиодов (LED).

По сравнению с ранее применявшимися технологиями у светодиодной LED подсветки LCD (ЖК) телевизоров имеется достаточно преимуществ, но есть и недостатки (присущие самой технологии):

Недостатки технологии LED

Изначально, подсветка такого типа не улучшает углы обзора LCD (ЖК) дисплея
- Более тонкие модели с боковой LED подсветкой могут страдать от неравномерности засветки экрана
- LED подсветка может приводить к локальным нежелательным затемнениям изображения.

Конечно, эти недостатки в большинстве случае успешно преодолеваются в конкретных моделях телевизоров и мониторов, поскольку и сама технология все время совершенствуется. К тому же, не только подсветка влияет на качество картинки на экране.

Преимущества телевизоров с LED подсветкой

Все типы LED подсветки более экономичные
- Технологии типа Edge LED позволяют создавать телевизоры с очень тонким экраном
- LED светодиоды не содержит ртути (хотя технология их изготовления использует галлий и мышьяк)

Само собой, чудес не бывает. Как правило, у более дорогой модели будет и более качественное изображение, и считающийся самым перспективным на данный момент времени тип подсветки экрана. Но изображение будет хорошим не только и не обязательно из-за подсветки. Все остальные устройства телевизора, в том числе видеопроцессор могут быть очень хорошего качества. TV может быть очень хорошо настроен (то, что раньше называлось "откалиброван"). В конце концов, могут быть правильно и соответствующим данному освещению образом выставлены регулировки...

Из всего этого, на наш взгляд, можно сделать вывод:

Выбирая телевизор, не следует уделять большое внимание типу подсветки. Будет лучше, если вы лично сравните качество изображения у нескольких моделей, и выберете тот, у которого картинка покажется приятней.

А выбирать, какой тип подсветки лучше - это задача производителей. Пока они сами не могут прийти к устоявшемуся мнению (что естественно, ведь технологии движутся вперед очень быстро).

Взять к примеру RGB LED подсветку. Считается, что она обеспечивает гораздо более богатую цветовую гамму, чрезвычайно четкое и контрастное изображение на экране, однако ее повсеместного распространения с течением времени не наблюдается. Даже наоборот, похоже, что производители от нее отказываются. Во первых, она значительно дороже других типов. А еще у нее тоже есть технические ограничения: число элементов подсветки ограничено, поскольку контролировать каждую часть монитора слишком сложно и затратно. В результате, может уменьшиться часть подсветки сцены, которой следовало бы быть яркой.

Дополнение:

Последнее время поступает информация об удачных усовершенствованиях этой технологии компанией Mitsubishi. Более того, они разрабатывают и совсем новый тип подсвечивания RGB Backlit с использованием трехцветного лазера. Возможно, скоро о RGB подсветке снова заговорят в полный голос.

Сергей Филинов

Хотя по написанию LED схожа с OLED, но обозначает она совсем другую технологию. Жидкокристаллический LED телевизор, что это значит – это аппарат с использованием другой системы подсветки по сравнению с обычными lcd моделями. И если OLED (Organic Light-Emitting Diode) это значит, что экран состоит из органических светоизлучающих диодов, то LED (Light Emitting Diode) – это использование диодов для подсветки матрицы жидкокристаллического телеприемника.

LED (Light Emitting Diode) – светоизлучающий диод, а в телевизионной технике эта аббревиатура означает экран на жидкокристаллической матрице (LCD) и с подсветкой от этих светоизлучающих диодов . После введения нового вида подсветки производители телевизоров в названиях моделей стали заменять "LCD" на "LED".

Это делалось скорее с маркетинговой точки зрения. На самом деле это была не новая технология экрана, а только другой вид подсветки. Но это название телевизоров сохранилось и применяется сегодня.

Если в обычных жк телевизорах используется лампа с холодным катодом, те же флуоресцентные (люминесцентные) лампы (Cold Cathode Fluorescent Lamps, CCFL) , то lcd led используют светоизлучающие диоды. Как известно жк (lcd) экраны в телевизорах состоят из ячеек (пикселей) с жидкими кристаллами и в зависимости от положения кристалла в ячейке пропускает или нет свет. Так создается свечение экрана.

От качества жк матрицы зависят такие параметры как статическая контрастность, уровень черного, углы обзора, частота обновления, время отклика. Различают такие технологии производства матрицы на жидких кристаллах для телевизоров: TN, IPS (S-IPS, IPS-Pro, P-IPS, AH-IPS), VA/MVA/PVA, PLS.

От подсветки зависят такие параметры как яркость, цветопередача, цветовой охват, динамическая контрастность. Хотя правильнее рассматривать именно систему матрица+подсветка в телевизоре и для нее измерять параметры.


Производители утверждают, что применение светодиодной подсветки может увеличить:

  • яркость,
  • контрастность,
  • четкость изображения,
  • цветовую гамму.

Еще снижается энергопотребление LED телевизора примерно на 40%. Так же в лед телевизорах не используется ртуть, которая применяется в лампах дневного света, что сказывается на экологии.

Действительно, современные сверхяркие светодиоды могут обеспечить высокую яркость изображения на дисплее.

Контрастность увеличивается и вводится понятие динамической контрастности, когда регулируется яркость свечения светодиодов локально для разных участков экрана, и засчет этого растет показатель динамической контрастности. При этом уровень статической контрастности телевизора остается одним и тем же, он зависит от матрицы дисплея.

Уровень черного так же улучшается за счет регулирования свечения диодов во время просмотра видео. На темной сцене уровень подсветки снижается и экран становится темнее, а отсюда и улучшается уровень черного.

А вот насчет увеличения цветовой гаммы телевизора, то здесь нужно рассматривать все подробнее.

Белые или составные светодиоды

Технологически подсветка дисплея в LCD телевизоре осуществляется от светодиодов. Для этого используют белые диоды, свет от которых попадает на светофильтры и получают синий, зеленый и красный цвета. Подобный вид называется WLED.

Для улучшения цветового охвата сначала стали использовать в качестве подсветки сразу три вида светодиодов: красные, зеленые, синие. Такая технология называется RGB LED.

Но получить с помощью таких технологий нужный спектр света не получалось. И цветовой охват был недостаточен для использования в телевизорах UHD. Для решения этой проблемы были изобретены новые виды светодиодов в телевизорах.

Сейчас в премиум моделях телевизоров используются составные диоды (GB-R LED, RB-G LED) или квантовые точки.

В составных светодиодах объединяют синий и зеленый в один и покрывают красным люминофором (GB-R), или в другом случае объединяют красный и синий и покрывают зеленым люминофором (RB-G).

Квантовые точки в LED телевизоре

Совсем другую технологию изменения подсветки WLED предложила компания Nanosys.

Квантовые точки в телевизоре заменяют часть диодов, в данном случае красные и зеленые. Остается только синий светодиод, который формирует поток света и для возбуждения квантовых точек и для работы синих суб-пикселей на экране. А поток света на красные и зеленые суб-пиксели формируют квантовые точки.

Методы лед подсветки

Для повышения качества изображения на экране телевизора появилась технология локального затемнения local dimming , по которой управление светодиодами происходит группами из нескольких диодов. Система local dimming имеет несколько недостатков:

  1. плохая однородность цвета на изображении, то есть заметны яркие и темные пятна на участках где ярко включена и выключена подсветка;
  2. на контрастных переходах появляются цветные ореолы;
  3. на темных участках пропадают детали изображения.

Эти недостатки трудно определить по обычной видео картинке на экране телевизора, поэтому сегодня метод локального затемнения широко используется в моделях с led подсветкой.


Так же можно разделить LED телевизоры по способу расположения светодиодов: Direct и Edge.

Direct - это когда диоды располагаются сзади экрана равномерно, в виде матрицы.

Edge – это когда они располагаются по периметру экрана совместно с рассеивающей панелью. При подобном расположении нельзя сделать эффективное локальное затемнение по методу local dimming.

При прямом (Direct) методе можно получить более равномерную подсветку, по сравнению с методом Edge, но увеличится толщина телевизора и энергопотребление за счет увеличения количества светодиодов. Сверхтонкие телевизоры (толщина может быть меньше 3 сантиметров) можно получить, только применяя расположение диодов Edge.

Из-за своей экономичности и при этом показывающей достаточно хорошие результаты, наиболее часто используется боковая (Edge) подсветка с локальным затемнением.

На 2015 год LED телевизоры выиграли конкуренцию у плазменных телевизоров, а OLED панели пока по стоимости не могут сравняться с лед моделями. Поэтому в 2015 году у всех мировых производителей в модельном ряде телевизоров все места занимают LED аппараты. Только некоторые производители решились выпустить OLED телевизоры, особенно здесь лидерство держит LG. Так что покупая телевизор этого года, вы наверняка купите именно LED модель.

Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.

Разбираем монитор
На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса


2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:


Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.
4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):


5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:


По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе. Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке - т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:


И блок с подсветкой отдельно:


Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».
Вот собственно и все - мы разобрали монитор.

Подсветка светодиодной лентой
Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 - 120 светодиодов на метр. Первое что оказалось - ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) - 7 мм (на самом деле бывают лампы подсветки двух стандартов - 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано - сделано:


Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т.е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится - прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.


On - сигнал с платы управления на включение подсветки (+5V)
Dim - ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):


В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off - нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:


Расчет выходного напряжения для LM2941 производится по формуле:

Vout = Vref * (R1+R2)/R1

Где Vref = 1.275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:

R2=R1*(Vout/Vref-1)

Максимальное необходимое нам напряжение для ленты - 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится - около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм - 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 - 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).

Монтаж светодиодной ленты
Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):


Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):


После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:


Питание и сигнал управления On заводились с платы блока питания:


Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:

Pd = (Vin-Vout)*Iout +Vin*Ignd

Для моего случая составляет Pd = (13.6-13)*0.7 +13.6*0.006 = 0.5 Ватт поэтому было решено обойтись самым маленьким радиатором для LM2941 (посажен через диэлектрическую прокладку т.к. от земли он в LM2941 не изолирован).
Окончательная сборка показала вполне себе работоспособность конструкции:


Из достоинств:

  • Используется стандартная светодиодная лента
  • Простая плата управления
Из недостатков:
  • Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
  • Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
  • Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)
Вполне хороший, простой и бюджетный вариант ремонта подсветки. Вполне комфортно смотреть фильмы или использовать монитор в качестве кухонного телевизора, но для каждодневной работы наверное не подойдет.
Регулировка яркости с помощью ШИМ
Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:


Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)

Более плотная LED подсветка
Для решения проблемы недостаточной яркости (а заодно и равномерности) подсветки было решено поставить больше светодиодов и чаще. Поскольку оказалось что покупать светодиоды поштучно дороже чем купить 1.5 метра ленты и выпаять их оттуда был выбран более экономный вариант (выпаивать светодиоды из ленты).
Сами светодиоды 3528 разместились на 4-х полосках 6 мм шириной и 238 мм длиной по 3 светодиода последовательно в 15 параллельных сборках на каждой из 4-х полосок (разводка плат для светодиодов прилагается). После припайки светодиодов и проводов получается следующее:


Полоски закладывается по две вверху и внизу проводами к краю монитора в стык в центре:


Номинальное напряжение на светодиодах 3.5В (диапазон от 3.2 до 3.8 В), так что сборка из 3-х последовательных светодиодов должна питаться напряжением порядка 10.5В. Так что параметры регулятора нужно пересчитать:


Максимальное необходимое нам напряжение для ленты - 10.5В. Т.е. максимальное значение R2 = 1000*(10.5/1.275-1) = 7.23кОм. Минимальное напряжение при котором сборка из светодиодов еще хоть как-то светится - около 4.5 вольт, т.е. минимальное значение R2 = 1000*(4.5/1.275-1) = 2.53кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 7.23кОм - 2.53кОм = 4.7кОм, а RV2 выставляем примерно в 7.23-4.7 = 2.53 кОм и регулируем в собранной схеме для получения 10.5В на выходе LM2941 при максимальном сопротивлении RV1.
В полтора раза больше светодиодов потребляют 1.2А тока (номинально), поэтому рассеиваемая мощность на LM2941 будет равна Pd = (13.6-10.5)*1.2 +13.6*0.006 = 3.8 Ватт, что уже требует более солидного радиатора для отвода тепла:


Собираем, подключаем, получаем гораздо лучше:


Достоинства:

  • Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
  • Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
  • Все еще простая и дешевая плата управления
Недостатки:
  • Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
  • LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса
Плата управления на основе Step-down регулятора
Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:


Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:

Vout=Vref*(1+R2/R1)

Где Vref = 1.23V. При заданном R1 можно получить R2 по формуле:

R2=R1*(Vout/Vref-1)

В расчетах R1 эквивалентно R4 в схеме, а R2 эквивалентно RV1+RV2 в схеме. В нашем случае для регулировки напряжения в диапазоне от 7.25В до 10.5В возьмем R4=1.8кОм, переменный резистор RV1=4.7кОм а подстроечный резистор RV2 на 10кОм с начальным приближением в 8.8кОм (после сборки схемы лучше всего выставить его точное значение измеряя напряжение на выходе LM2576 при максимальном сопротивлении RV1).
Для этого регулятора решил сделать плату (размеры значения не имели, т.к. в мониторе достаточно место для монтажа даже габаритной платы):


Плата управления в сборе:


После монтажа в мониторе:


Все в сборе:


После сборки вроде все работает:


Итоговый вариант:


Достоинства:

  • Достаточная яркость
  • Step-down регулятор не греется и не греет монитор
  • Нет ШИМ а значит ничего не моргает ни с какой частотой
  • Аналоговая (ручная) регулировка яркости
  • Нет ограничений на минимальную яркость (для тех кто любит работать по ночам)
Недостатки:
  • Немного смещен баланс белого в сторону зеленых тонов (но не сильно)
  • При малой яркости (очень малой) видна неравномерность в свечении светодиодов разных сборок из-за разброса параметров

Варианты улучшения:

  • Баланс белого регулируется как в настройках монитора, так и в настройках почти любой видеокарты
  • Можно попробовать поставить другие светодиоды, которые не будут заметно сбивать баланс белого
  • Для исключения неравномерного свечения светодиодов при малой яркости можно использовать: а) ШИМ (регулировать яркость с помощью ШИМ всегда подавая номинальное напряжение) или б) соединить все светодиоды последовательно и питать их регулируемым источником тока (если соединить последовательно все 180 светодиодов, то понадобится 630В и 20мА), тогда через все светодиоды должен проходить один и тот же ток, а на каждом будет падать свое напряжение, яркость регулируется изменением тока а не напряжения.
  • Если хочется сделать схему на основе ШИМ для LM2576 можно использовать схему И-НЕ на входе On/Off этого Step-down регулятора (по аналогии с приведенной схемой для LM2941), но лучше поставить диммер в разрыв минусового провода светодиодов через logic-level mosfet

Когда вы делаете ремонт квартиры полностью самостоятельно, то легко справитесь с таким творческим процессом, как создание уникальной светодиодной подсветки. Как сделать светодиодную подсветку самостоятельно, возможно ли это и насколько просто - такие вопросы встают перед вами. Благодаря тому, что теперь делают натяжные потолки из гипсокартона - установка светодиодной подсветки стала возможной в любой квартире, а также, в любой ее части: спальня, кухня или ванная комната. Вы можете даже установить ее в шкафу.

Что такое Led-лента

Что же собой представляет Led-лента или светодиодная лента - это гибкая планка, с одной стороны имеющая клеящую основу, а на другой располагаются светодиоды и резисторы. Лента имеет кратные участки (5 см), на которых чаще всего располагаются три светодиода и специальные отметки, обозначающие, где можно разрезать ленту. Светодиоды в ленте соединяются последовательной цепью. Ленты могут быть защищенными от воздействий окружающей среды пластиковыми трубками или силиконом, а могут быть открытыми, в зависимости от места их использования, выбирается и лента. Диоды, используемые в ленте, бывают двух типов: SMD 3528 и 5060 (5050), вторые более мощные и могут использоваться как самостоятельные источники освещения комнаты.

Если для подсветки вы используете RGB ленту, то важно знать, что она имеет четыре выхода - на основную массу и по одному на каждый цвет: красный, зеленый и синий.

Схема светодиодной подсветки

Если вам нужно осветить большую площадь, то тогда лучше делать ленты длинной не более 15 метров, в противном случае лампы ближе всего находящиеся к источнику питания будут быстрее выгорать, так как в начале цепи напряжение будет очень сильным.

Порядок ваших действий:

  1. Определяетесь с типом светодиода SMD 3528 или SMD 5050 - вторые будут подороже, но и мощность у них выше.
  1. Определяем нужную плотность светодиодов. Бывают 30, 60, 120. Указанное число показывает количество светодиодов на один метр - чем больше число, тем ярче будет освещение.
  1. Определяемся с типом ленты. Например, IP 44 - это влагозащитные. Определяемся с клейкой стороной - нужна она вам или нет.
  2. Цвет - один цвет или многоцветные, для второй нужен контроллер.
  1. Подсчеты: измеряем периметр участка, где будет располагаться подсветка, подсчитываем суммарную площадь - умножаем потребляемую мощность одного метра, на полученный метраж. По полученным данным подбираем блок питания и контроллер.
  2. Определяем вариант расположения подсветки. Будут выступы из гипсокартона или нет - решать вам.
  1. Монтаж: нарезаем ленту (на ней есть специальные отметки - где можно разрезать), паяем одноцветные участки по типу к «+» идет «-«, для многоцветной ленты паять нужно одноименные участки с буквенным обозначением "V+", "R", "G", "B". Помним, что подключать к одному блоку питания можно не более 15 метров ленты.
  2. Подключение. Проверяем полярность - ошибок быть не должно! Если сетевой шнур не подключен заранее, то подключайте шнур к контактам L и N, затем если у вас многоцветная лента подключаем контроллер и только потом подключаем непосредственно ленту.

Чаще всего используется контурная подсветка потолка, но возможны и другие варианты. С помощью светодиодных светильников и лент, вы можете выгодно разграничивать части комнаты или подчеркнуть цветовую гамму помещения. Например, если спальня у вас выполнена в синих глубоких тонах, то потолок можно украсить узором из светодиодных ламп так, что будет казаться, словно над вашей головой звездное небо. Если в детской комнате живут два ребенка, то интересным решением будет световое разделение комнаты таким образом, чтобы у каждого ребенка был свой уголок и для работы и для сна.

Преимущества светодиодной подсветки led в том, что она легко монтируется, стоит относительно недорого, долго служит и у нее есть разные расцветки. Тогда как у стандартных светильных бытовых приборов только два варианты теплый свет и холодный. А если говорить о неоне - то он недолговечен, сложен в установке.

Возможности расцветки у светодиодных светильников многообразен - от одноцветной, до RGB ленты, которая может менять цвет. Если у вас нет сильных ограничений по деньгам, то купите полноцветную ленту и отдельный контроллер к ней. Покупая ленту, выбирайте в силиконовой изоляции, если вас затопят соседи сверху, то проводка будет в безопасности. А что касается выбора конкретного цвета, то тут решать вам: для глаз более приятен зеленый цвет, а вот синий может восприниматься неправильно, иногда даже тускло.

Подсветка может быть выполнена разными вариантами - это может быть светодиодная подсветка натяжного потолка, с помощью жесткого модуля, могут использоваться точечные светильники, а также и мини прожекторы. Что из этого использовать лучше подскажет ваша фантазия, а может быть комплексное решение всех членов семьи, ведь каждый хочет перестроить окружающий его мир под себя, а уж собственную комнату и подавно. Главная задача при установке подсветки - она должна быть незаметной снизу, поэтому, для того чтобы ее скрыть, используют выступы или карнизы, при этом расстояние тоже имеет значение. Так при слишком большом расстоянии - подсветка будет освещать больше саму нишу, чем непосредственно потолок, а при маленьком - будут заметны сами диоды и промежутки между ними, которые не освещаются.

Подсветка светодиодной лентой проще и в монтаже, и в функционале - ее можно установить там, где другие светильники не справятся. Для ленты даже труднодоступные места не помеха.

Светодиодная подсветка потолка

Сначала вам потребуется создать дизайнерский проект, то есть план работы и рисунок конечного результата. Важно правильно рассчитать, сколько светильников нужно, в каких конкретно местах их разместить, сколько метров светодиодной ленты вам потребуется, важно помнить, что удобнее всего брать ленту кратную 5 см - на таком расстоянии можно разместить 3 светодиода. Затем после расчетов нужно купить светодиодную подсветку, блок питания к ней, а если вы покупаете многоцветную ленту, то контроллер к ней. Когда все куплено, обязательно прочтите инструкцию. Для удобства монтажа светодиодной подсветки, на одной из ее сторон есть клейкий слой. Предварительно место крепления необходимо зачистить и обработать спиртовым раствором. Затем снимите защитный слой прижмите ленту к месту крепления и немного подержите. Если ваша лента по проекту должна изгибать то помните, перегибы должны быть более 2 сантиметров в диаметре.

В зависимости от страны производителя, от используемых диодов, а также от цветности цена светодиодной подсветки будет отличаться.

Светодиодная подсветка кухни

Светодиодная подсветка на кухне уже становится очень модной и популярной, с ее помощью можно обозначить разные зоны, создать уют или интимную обстановку для приятного вечера. С помощью светодиодов на кухне можно осветить ниши, «фартук», шкафы сверху или снизу. В настоящее время такую подсветку используют и в барах, ресторанах, а также в гостиницах.

Если вы хотите разделить на кухне пространство на рабочее и остальное - используйте разные цвета. Для деревянной мебели вам лучше использовать диоды теплых оттенков желтого и оранжевого, если у вас кухня в стиле «хай-тек», то вам больше подойдут синий или серебристый цвета. А зону приема гостей можно оборудовать полноцветной лентой с контролером.

Можно также красиво подсветить барную стойку или стеклянный шкаф с хрусталем - смотреться будет просто великолепно и шикарно.

Подсветка в автомобиле

Одно из последних новшеств для автомобиля - это установка на нем светодиодных лент. При этом освещают сам автомобиль снизу, делают освещение салона или светодиодную подсветку панели приборов. Сегодня продаются в большом ассортименте светодиодные лампочки, устанавливаемые в приборную панель - они потребляют мало энергии и при этом достаточно яркие. Поскольку одинаковых машин на парковке становится все больше, то сделать вашу машину уникальной, отличной от остальных и поможет оснащение ее светодиодами. Тюнинговать свой автомобиль вы можете как с помощью светодиодных ламп, так и с помощью светодиодных лент. Необычным решением может оказаться подсветка дисков автомобиля. Традиционно используется диоды синего цвета, но можете выбрать и другой цвет, в зависимости от цвета вашего авто.

Подсветка светодиодными панелями

Кроме светодиодных лент, есть еще светодиодные панели - они, как правило, очень тонкие (около 13-15 см), имеют многообразие цветов и габаритов. Эта новинка привлекает внимание дизайнеров, так как позволяет решить такие проблемы как, например, слишком низкие потолки. Или, если требуется яркое цветовое решение для стен - тут панели просто выручат, тогда как ленты, потеряются. Это великолепное решение и для детской комнаты, и для ресторана, и для клубной обстановки, они могут быть использованы и в офисных и складских помещениях.

Светодиодные панели разработаны для разного использования, они разрабатываются и для монтажа к бетонным и кирпичным стенам или потолкам, могут быть встроены в подвесной потолок, или могут быть отдельно подвешены специальными креплениями.

Вы можете не беспокоиться о зрении - световые панели абсолютно безопасны для ваших глаз. Как правило, световые панели имеют разную интенсивность освещения, которая может регулироваться, с помощью специального пульта дистанционного управления.

Светодиодные приборы освещение от ламп и прожекторов, до панелей и лент - это современно, стильно и нестандартно. С помощью таких светильников вы сделаете дизайн вашей квартиры или офиса, или автомобиля незабываемым и уникальным. Вы можете использовать светодиодные светильники и для благоустройства различных ландшафтов - в дизайне гостиниц, парков развлечений или даже в бассейне. Установить их можно как самостоятельно, так и пригласив специалистов. Кроме красоты, светодиодные приборы освещение потребляют намного меньше электроэнергии, являются высокотехнологичными и надежными изделиями.

Совсем недавно – в самый разгар лета, на нашем сайте был опубликован репортаж LED-телевизоры Samsung: из Калуги с любовью , посвящённый открытию российского завода Samsung по выпуску различной электроники и бытовой техники - Samsung Electronics Rus Kaluga (SERK). Напомню: ключевым моментом репортажа был рассказ о запуске производственных линий по выпуску наиболее современных и наиболее актуальных на сегодняшний день плоскопанельных телевизоров Samsung со светодиодной подсветкой – так называемых LED TV . С тех пор на редакционную почту не раз приходили письма, в которых наши читатели просят подробнее рассказать о технологии LED TV. Основные вопросы лежат в плоскости технических подробностей технологии, её преимуществах перед конкурирующими предложениями и так далее. Но почти всегда речь идёт о ценовом факторе: действительно ли стоит отдавать за LED TV сумму, порой более чем в два раза превышающую стоимость ЖК и плазменных телевизоров с аналогичными диагоналями и разрешением экрана, будет ли реальная отдача от таких затрат. Что характерно, по прошествии времени актуальность задаваемых вопросов не снижается. Плоскопанельные ТВ входят в моду, постоянно расширяется их ассортимент. За примером далеко ходить не надо: в планах Калужского завода Samsung Electronics выпуск до конца года порядка 75 тысяч телевизоров всех трёх LED TV серий - 6000, 7000 и 8000, с диагоналями 32, 37, 40, 46 и 55 дюймов и с особым упором на наиболее "ходовые" 32- и 40-дюймовые модели. Уже сейчас эти модели присутствуют на прилавках большинства российских розничных сетей, наряду с этим растёт выбор "светодиодных" моделей телевизоров от других компаний, так что рост интереса к этой технологии вполне понятен. Словом, сегодня мы публикуем краткий обзор особенностей технологии производства плоскопанельных дисплеев со светодиодной подсветкой.

LED TV или всё же LED LCD TV?

Для начала стоит определиться с терминологией, устоявшейся к настоящему времени. Термин LED TV, впервые введённый в обиход Samsung Electronics и используемый рядом компаний, и разные вариации этого термина вроде LED-backlit LCD, используемые другими компаниями, на практике означает что речь идёт о старом добром плоскопанельном ЖК экране, но оснащённом более современной и качественной подсветкой – светодиодной. Иными словами, говорить о том что LED TV – это именно телевизор со светодиодным экраном с технической точки зрения было бы не совсем корректно. Различные технологии, где светоизлучающие диоды формируют "картинку" – такие как OLED, OEL или AMOLED, относятся к несколько другому классу дисплеев. Настоящий светодиодный экран – где каждый пиксель отображается с помощью одного светодиода или группы светодиодов, можно встретить, например, на огромных рекламных щитах, глядя на которые издалека мы видим цельную картинку, а не отдельные светодиоды. Другой пример – дисплеи на органических светодиодах (Organic Light-Emitting Diode, OLED), где определённые виды органических полимерных материалов излучают свет при воздействии электрического тока. Технология OLED действительно перспективна как основа для выпуска высококачественных дисплеев для телевизоров и мониторов – такие дисплеи легче, не требуют подсветки, обладают более качественной цветопередачей, большим диапазоном яркости, меньшим расходом энергии, в некоторых версиях даже гибкостью. Более того, по мере совершенствования технологии ожидается, что со временем производство OLED-дисплеев станет даже выгоднее выпуска ЖК экранов. Однако в силу ряда технологических ограничений - например, срока жизни синих полимерных люминофоров, который заметно короче чем у красных и зелёных органических светодиодов, в настоящее время технология OLED применяется главным образом в производстве экранов с небольшой диагональю для различных мобильных устройств. Серийно выпускаемые OLED телевизоры в настоящее время обладают небольшой диагональю, скорее, это редкая экзотика с огромной ценой нежели массовый продукт. Хотя, повторюсь, перспективы у технологии многообещающие. Итак, остановимся на том, что применение термина LED TV на практике означает: речь идёт о ЖК телевизоре, оснащённом современной LED (светодиодной) подсветкой. Иными словами, такие телевизоры было бы уместно маркировать как LED LCD TV. Однако в обиходе "с лёгкой руки" Samsung всё же прижился более короткий и, видимо, более удобный в маркетинговом плане вариант - LED TV. Или LED-backlit LCD в других версиях.

LED TV против CCFL LCD TV

Всё познаётся в сравнении. До недавнего времени мы пользовались жидкокристаллическими телевизорами и мониторами, в большинстве своём оснащёнными традиционной подсветкой на основе так называемых флуоресцентных (люминесцентных) ламп с холодным катодом (Cold Cathode Fluorescent Lamps, CCFL), проще говоря, ламп дневного света. Производство экранов по технологии CCFL LCD "обкатано" на множестве поколений таких приборов и в настоящее время сравнительно недорого, а удобства по сравнению с предыдущим поколением дисплеев на электронно-лучевых трубках, главным образом такие как меньший вес и меньшее энергопотребление, привели к повсеместному (хотя и не окончательному) вытеснению последних из повседневного обихода. И всё бы хорошо, но подсветка с помощью флуоресцентных ламп имеет ряд недостатков, которые можно считать фундаментальными. Например, при CCFL подсветке достаточно сложно реализовать действительно глубокие чёрные тона – постоянно включенные лампы всё равно создают определённую "утечку" света даже на тех фрагментах изображения, которые по задумке в данный момент должны быть тёмными. Отсюда также логически вытекает субъективно воспринимаемое снижение чёткости картинки. Помимо этого, подсветка с помощью флуоресцентных ламп затрудняет передачу множества цветовых оттенков, в результате чего добиться хорошей цветовой насыщенности оказывается очень сложно. Среди других проблем технологии CCFL LCD также нельзя не отметить сложность с достижением высоких частот развёртки, ограниченный срок службы ламп, сравнительно высокое энергопотребление, и, наконец, экологический нюанс - необходимость использования ртути в составе ламп. Словом, так или иначе, но необходимость замены флуоресцентных ламп на что-то более эффективное созрела давно, и в результате многочисленных экспериментов выбор пал на светодиодную подсветку. С её помощью можно улучшить как минимум четыре ключевых фактора качества изображения: яркость, контрастность, чёткость изображения и цветовую гамму. Не говоря уж о более равномерном характере такой подсветки, что немаловажно при просмотре слабо освещённых сцен с изначально малым контрастом. В дополнение к этому также стоит упомянуть, что экономичность светодиодов и большее время работы без потери характеристик позволяют значительным образом снизить энергопотребление LED TV по сравнению с обычными ЖК телевизорами с технологией CCFL LCD.

LED-подсветка бывает разная

К настоящему времени разработан ряд различных технологий подсветки ЖК экранов с помощью светодиодов. Как правило для создания модулей подсветки (Back Light Unit, BLU), используют LED-массивы, составленные из белых (White) или разноцветных - RGB (Red, Green, Blue; красных, зелёных, голубых) светодиодов. Принцип подсветки также представлен двумя основными вариантами прямой (Direct) и торцевой (Edge). В первом случае это массив светодиодов, расположенный позади ЖК-панели. Другой способ, позволяющий создавать сверхтонкие дисплеи, получил название Edge-LED и предусматривает размещение светодиодов подсветки по периметру внутренней рамки панели, а равномерное распределение подсветки осуществляется с помощью специальной рассеивающей панели, расположенной за ЖК экраном – как это делается в мобильных устройствах. Сторонники прямой светодиодной подсветки обещают более качественный результат за счёт большего количества светодиодов и технологии локального затемнения для снижения цветовых разводов. Обратная сторона прямой подсветки – большее количество светодиодов и сопутствующее повышение расхода энергии и цены. К тому же о сверхтонком дизайне телевизора придётся забыть. Сторонники торцевой подсветки, кроме экономии энергии, обещают не худшее качество при более тонком дизайне. Сегодня выпуском ЖК телевизоров со светодиодной подсветкой занимается множество мировых компаний, в том числе Samsung Electronics, Toshiba, Philips, LG Electronics, Sony и другие. В своих ЖК телевизорах и мониторах со светодиодной подсветкой каждая компания использует вариации выше указанных технологий. Так, например, в телевизорах Sony используется технология Edge LED, что позволило значительно уменьшить толщину достаточно больших телевизоров.

Однако далее мы рассмотрим технологию LED TV на примере телевизоров Samsung Electronics – по той причине, что в настоящее время в России доля Samsung на рынке LED-телевизоров достигает 98%.

LED-подсветка в исполнении Samsung: как это работает

По своей сути ЖК экран - это многослойный "пирог", составленный из фильтров цвета, массивов жидких кристаллов, ламп подсветки и пр. Ячейки жидких кристаллов сами по себе не светятся, но, в зависимости от уровня поданного на них напряжения, открываются для пропускания света полностью, приоткрываются частично или просто закрыты в случае отображения тёмного участка картинки.

Роль ламп подсветки во всей это истории – просветить приоткрывшиеся ЖК ячейки, чтобы на экране получилась финальная картинка. Несмотря на столь упрощённый пересказ принципа работы ЖК-дисплея, этого вполне достаточно чтобы понять назначение его основных компонентов. Толщина слоёв "пирога" различных ЖК экранов разная. В случае использования традиционных флуоресцентных ламп слой подсветки оказывается настолько толстым, что занимает больший объём нежели все остальные слои вместе взятые.

Заменим люминесцентные лампы подсветки ЖК ячеек на светодиоды. Первый же очевидный эффект такой замены – значительное уменьшение общей толщины ЖК-панели. Более того, в LED-телевизорах Samsung светодиоды размещены не за матрицей, а по её краям, благодаря чему наличие такого торцевого слоя практически никак не отражается на общей толщине, зато значительно уменьшается общий вес.

Светонаправляющий слой LED BLU обеспечивает равномерную подсветку во всех участках экрана. Благодаря специальной отражающей решетке эффективность светопередачи LED-телевизоров Samsung заявлена на 20% выше, чем у моделей с прямой RGB LED подсветкой. К тому же, вместо привычных 10 и более сантиметров толщины получается менее 3 см – хочешь, ставь такой телевизор на полку, хочешь – вешай как картину на стену с помощью специально разработанной облегченной системы крепления. Толщина LED-телевизоров Samsung серии 8000 в тонкой части корпуса составляет 11 мм, в самой толстой – 29,9 мм. В рекламе Samsung всегда указывает величину, полученную в результате измерений самой толстой части корпуса.

Для справки: В LED-телевизорах Samsung серии 8000 для подсветки используется 324 светодиода. Благодаря полному отказу от люминесцентных ламп LED-телевизоры не содержат ни грамма ртути. В технологии Samsung вдобавок к этому удалось также полностью избавиться от пайки с помощью соединений свинца, и практически свести к нулю выбросы летучей органики и других вредных побочных продуктов при отказе от распыляемых порошковых красок – тонкий, прочный и симпатичный корпус новых телевизоров изготавливается по специальной технологии литья Crystal Design. Ещё одно значительное преимущество LED-телевизоров – высокий уровень контрастности изображения, значительно перекрывающий лучшие показатели традиционных ЖК матриц. Яркость свечения светодиодов настолько велика, что, например, в LED-телевизоах Samsung серий 6000, 7000 и 8000 коэффициент контрастности достигает 1000000:1. В дополнение цифровая обработка сигнала с технологией Mega Dynamic Contrast обеспечивает детальное изображение в слабоконтрастных "сумеречных" участках картинки.

Максимум возможностей новой системы подсветки выжимается с помощью многослойного светофильтра Ultra Clear Panel, пропускающего свет изнутри экрана и не отражающего его снаружи, так удаётся достигнуть лучшей яркости и контраста при минимуме бликов вне зависимости от того, как экран освещён снаружи – солнечным светом или искусственным электрическим освещением. Светодиодная подсветка позволяет добиться белой подсветки ЖК ячеек, в результате чего удаётся добиться отображения более широкой и натуральной гаммы цветовых оттенков. Цветовая палитра LED-телевизоров получается сочней и насыщенней, зелень и синева ярких участков по сравнению с обычными моделями уже не выглядят выцветшими и бледными. В LED-телевизорах Samsung за насыщенностью красок также дополнительно следит аппаратная технология Wide Color Enhancer Pro. Зачастую слабым местом ЖК экранов является смазанность картинки при большом времени отклика, от чего падает резкость изображения и снижается плавность движения объектов в динамичных сценах. В новых LED-телевизорах Samsung за этим следит система интерполяции Motion Plus: модели серий 6000 и 7000 обладают удвоенной 100-Гц развёрткой, а флагманская серия 8000 обладает учетверённой 200 Гц развёрткой.

Немаловажный фактор – расход электричества. Традиционные ЖК телевизоры, конечно же, экономнее былых моделей с электронно-лучевыми кинескопами, но не стоит забывать, что и диагонали нынче уже не те, так что с большими ЖК телевизорами электросчетчики и сейчас крутятся достаточно быстро. Что касается новых LED-моделей, светодиодная подсветка позволяет значительно сократить расход энергии без ущерба для яркости изображения.

Кроме ощутимой экономии электричества – до 40% по сравнению с традиционными ЖК моделями с той же диагональю, LED-телевизоры Samsung также могут похвастать сертификацией по одному из наиболее строгих экологических стандартов Energy Star 3.0.

LED TV Samsung: это не только телевизор…

В телевизоре всё должно быть прекрасно – и характеристики, и внешний вид, и набор функций. Раз уж мы сегодня говорим о конкретных LED-телевизорах Samsung, выпускаемых нынче в Калуге, было бы упущением не упомянуть их основные характеристики. К теме сегодняшней статьи это имеет лишь косвенное отношение; тем не менее, полагаю, несколько строк подробностей о потенциальном предмете покупки не будут лишними.

Прежде всего, LED-телевизоры Samsung серий 6000, 7000 и 8000, наряду с приёмом традиционных аналоговых каналов готовы для работы с цифровым ТВ благодаря наличию встроенных тюнеров DVB-T/C. Когда бы не настала эра повсеместного цифрового телевидения в России, вы уже готовы к этому. Помимо этого, применяемый в этих моделях тюнер LNA plus создан специально с учетом российской специфики – помех, необъятных просторов и не первой свежести телевизионных ретрансляторов. В дополнение к этому благодаря наличию двух портов USB новые телевизоры можно использовать как фоторамку для просмотра фотографий с флэшки, просмотра мультимедийных видеороликов форматов DivX/Xvid, например, с внешнего USB-винчестера, а будет мало – есть встроенные 2 Гб флэш-памяти с заранее залитым контентом. Телевизор можно "прописать" в домашней сети с выходом на ноутбуки, десктопы и внешние хранилища данных, а пульт ДУ телевизора при этом превращается в беспроводную клавиатуру для перехода по папкам, вывода на дисплей контента из разных мест сети. Для выхода в интернет имеется разъём LAN и поддержка [email protected] с доступом к YouTube. Система звука в ультратонких LED-телевизорах – на уровне лучших моделей Samsung. Специально для ультратонких LED-телевизоров телевизоров был создан уникальный плоский сабвуфер, плюс, используются хорошо зарекомендовавшие себя скрытые динамики.

Наконец, связь с бытовой электроникой DVD-плеером, Blu-ray-проигрывателем, AV-ресивером, кинотеатром, HD-видеокамерой, игровой приставкой, может осуществляться с помощью подключения по интерфейсу HDMI, коих в конструкции LED-моделей Samsung предусмотрено четыре штуки.

LED TV: есть ли минусы?

Есть, а как же: это цена. Пока что LED-телевизоры значительно дороже своих собратьев с традиционной подсветкой. Впрочем, выход из такой ценовой ситуации будет традиционным: снижение цен по мере роста спроса и роста массовости производства. Пока что объём рынка LED-телевизоров невелик, но интерес к таким моделям за счёт их выдающихся характеристик огромен во всём мире. По мнению аналитиков Display Search, уже в следующем году каждый пятый проданный телевизор будет изготовлен по технологии LED TV, а ещё через пару лет – каждый второй. К этому времени можно ожидать и снижения цен.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

В смартфонах зональная LED-подсветка экранов появится во второй половине года

Казалось бы, появление OLED в смартфонах компании Apple ― это свидетельство совершенства данной технологии. Что может быть лучше OLED по совокупности потребительских характеристик? Разве что MicroLED, но для смартфонов это пока дорогое удовольствие. Зато на горизонте появилась другая дисплейная технология с использованием миниатюрных дискретных светодиодов ― это LCD-экраны с зональной подсветкой Mini LED. За счёт размещения в зоне подсветки тысяч светодиодов получается создать дисплей с более чем 1000 управляемых зон с высочайшими цветовым охватом, контрастностью и яркостью.

Модель ASUS ProArt PA32UCX оснащена системой подсветки Mini LED

Ранее такое возможно было только в дорогих профессиональных моделях мониторов, а с этого года подсветка Mini LED появится в относительно недорогих игровых мониторах для ПК. Одним из первых мониторов с подсветкой Mini LED стал показанный на CES 2019 32-дюймовый монитор ASUS ProArt Studio PA32UCX. Подсветка для монитора выпускается компанией Lextar Electronics. Подобную подсветку для игровых мониторов в конце 2018 года начала выпускать компания Epistar. В течение первой половины нового года к ним присоединятся компании Unity Opto Technology и Harvatek. Что интересно, подсветка Mini LED быстро начнёт проникать не только в телевизоры премиального класса, но также появится в смартфонах. Смартфоны с IPS-матрицами и зональной Mini LED подсветкой ожидаются во второй половине года. Среди населения тяга к прекрасному будет расти прямо на глазах.

Характерно, что появление подсветки Mini LED ― это один из способов для производителей светодиодов остаться на плаву. Зарабатывать становится всё труднее, поэтому они лихорадочно ищут новые рынки сбыта. В одном 32-дюймовом мониторе может разместиться до 10 000 светодиодов подсветки и больше. Спрос на данные решения может оказаться на достойном уровне.

SSD Team Group T-Force Delta R RGB

Другим расширяющимся рынком для сбыта светодиодов обещает стать рынок компьютерных комплектующих с подсветкой. Всё чаще производители начинают встраивать светодиоды в модули памяти, SSD-накопители и даже в коврики. Следует ожидать, что скоро светодиоды могут появиться в самых неожиданных местах. Наибольшее рвение в оснащении SSD декоративной светодиодной подсветкой проявила компания Team Group. Утверждается, что она ежемесячно поставляет от 15 до 20 млн SSD с подсветкой (так указано в источнике, но выглядит неправдоподобно много), что приносит ей до 60 % выручки. Эти поставки и поставки других производителей «декоративных» SSD привели к тому, что сегодня около 5 % SSD поставляются со светодиодной подсветкой. Красота спасёт мир, если раньше не сведёт его с ума.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Объяснение светодиодной подсветки ЖК-дисплея

- CNET

Сара Тью / CNET

Все так называемые светодиодные телевизоры на самом деле представляют собой просто ЖК-телевизоры, в которых для подсветки используются светодиоды.Эта подсветка создает свет, который позволяет ЖК-дисплею создавать изображение. Однако есть несколько способов размещения светодиодной подсветки, и такое расположение может существенно повлиять на качество изображения.

Итак, вот ваш путеводитель по всем различным версиям с некоторыми забавными иллюстрациями.

C-ya CCFL, hellllo LED
В традиционных ЖК-дисплеях в качестве подсветки используются CCFL или люминесцентные лампы с холодным катодом. Несмотря на дешевизну, они не так энергоэффективны, как светодиоды.Что еще более важно, все они содержат ртуть и не могут обеспечивать такое необычное освещение, на которое способны некоторые модели со светодиодной подсветкой. Из-за этих проблем и падения цен на светодиоды ЖК-телевизоры с подсветкой CCFL очень скоро полностью исчезнут. В 2013 году LG и Sony с гордостью объявила, что они вообще перестали использовать подсветку CCFL, даже в своих самых дешевых телевизорах, в пользу светодиодов. Vizio, Samsung, Sharp, Toshiba и Panasonic не так громко высказывались по этому поводу, но никто не анонсировал в 2013 году телевизоры без светодиодной подсветки.

Большинство светодиодных ЖК-дисплеев, представленных сегодня на рынке, имеют боковую подсветку, что означает, что светодиоды расположены по бокам телевизора и обращены к экрану. На изображении вверху светодиодные ленты расположены сверху и сбоку от этого покомпонентного изображения ЖК-панели. Здесь есть крупный план (полная статья с другими изображениями здесь).

Есть несколько моделей, светодиоды которых расположены на задней панели телевизора и обращены к вам. Они менее распространены, хотя возвращаются в виде более дешевых, но более толстых, в основном недорогих светодиодных ЖК-дисплеев.Есть несколько высококлассных телевизоров, которые используют полноцветную светодиодную подсветку немного по-другому, о чем мы поговорим позже.

Светодиоды

Edge-lit имеют световод, который помогает равномерно отражать свет от краев телевизора по экрану. Делают они это с переменным успехом. Чтобы дать вам представление о том, о чем я говорю, вот невероятно хорошо нарисованная диаграмма из этой статьи, которая показывает, как работают эти световоды.

На этой чудесной диаграмме показан вид сверху в разрезе правой половины ЖК-дисплея со светодиодной подсветкой.Светодиод (здесь желтый, потому что белый не отображается на белом фоне) загорается по ширине телевизора. Световод (круглые части) отражает этот свет в сторону экрана. Сделано идеально, центр экрана (где направляющая самая высокая) такая же яркая, как и края.

Поскольку яркость света наиболее яркая, ближе всего к светодиодам, ЖК-дисплеи с боковой подсветкой обычно имеют плохую однородность. Это особенно заметно на темных сценах, где области экрана будут казаться ярче других.Углы или края могут иметь что-то вроде крошечных фонариков, сияющих на экране. Проверьте, является ли проблема однородности ЖК-дисплея? для большего.

У каждого производителя есть предпочтительный метод бокового освещения, но некоторые модели могут иметь один тип, а другие модели - другой тип. Вообще говоря, чем меньше светодиодов, тем дешевле производить телевизор. Меньшее количество светодиодов также означает лучшую энергоэффективность, но светодиодные ЖК-дисплеи уже настолько эффективны, что это небольшое улучшение. К сожалению, конкретные подробности о том, где расположены светодиоды телевизора (помимо «прямого» или «краевого»), количество светодиодов и другая полезная информация о подсветке, редко указываются в технических характеристиках телевизора.

Самая большая разница между всеми методами светодиодного заднего / краевого освещения заключается в том, насколько эффективно их «локальное затемнение», что, как вы увидите, стало довольно широким термином.

Очевидно, это макет того, как выглядит ЖК-дисплей. В реальном мире светодиоды находятся на лицевой панели (рамке) вокруг экрана. Они также меньше по размеру.

По дну
В этой конструкции все светодиоды расположены в нижней части телевизора. Хотя производители не любят раскрывать, сколько светодиодов они используют, скорее всего, это тип с наименьшим количеством светодиодов.

Хотя телевизоры этого стиля утверждают, что имеют «локальное затемнение», вы можете видеть, что это довольно широкое определение «локального». Даже если каждый светодиод регулируется независимо (что маловероятно), вы все равно сможете затемнить только столбцы, которые тянутся сверху вниз. Примерно так:

Проблема со светодиодами только внизу, в том, что они всегда должны заполнять весь экран над ними. В зависимости от количества зон (адресуемых светодиодов) это приводит к тому, что «локальное» затемнение фактически не более локальное, чем столбцы, идущие сверху вниз от экрана.

Так что это значит? Что ж, есть предел тому, насколько агрессивные производители могут программировать локальное затемнение. Представьте себе ночной пейзаж с яркой полной луной. В идеале луна яркая, а остальная часть сцены темная. Благодаря плазменным панелям, OLED и полноразмерным светодиодным ЖК-дисплеям с локальным затемнением (подробнее об этом позже) яркость луны не зависит от остальной части изображения. Однако для светодиодных ЖК-дисплеев с нижней подсветкой, чтобы луна была яркой, светодиоды, которые освещают всю вертикальную часть экрана, должны быть яркими.Поэтому в большинстве случаев все, что находится под луной (в нашем примере), будет ярче, чем окружающее изображение. Вот сделанная в фотошопе (и преувеличенная) демонстрация того, как это может выглядеть.

На этом увеличенном изображении вверху показано то, как изображение будет выглядеть на «обычном» ЖК-дисплее без локального затемнения или на плазменных, OLED-дисплеях и ЖК-дисплеях с локальным затемнением на полном массиве. Джеффри Моррисон / CNET

M-O-O-N, что означает локальное затемнение.

Сверху и снизу
Как вы можете догадаться, у этой конструкции есть светодиоды на верхнем и нижнем краях экрана. Локальное затемнение здесь немного лучше, где зоны могут быть немного меньшими областями экрана, например:

Джеффри Моррисон / CNET

Как видите, есть еще некоторые области, которые не должны быть освещены, но это намного лучше. Идея с локальным затемнением заключается в том, что вам нужна как можно меньшая и точная область (в идеале, на пиксель, но это невозможно с нынешними технологиями).Помните, это вряд ли когда-нибудь будет выглядеть так серьезно, я просто иллюстрирую суть, чтобы вы могли это увидеть.

Слева и справа
Альтернатива верху и низу. Светодиоды по бокам. Локальное затемнение аналогично верхнему и нижнему.

Джеффри Моррисон / CNET

Так называемое "расцветание", которое преследовало ранние светодиодные ЖК-дисплеи с локальным затемнением, значительно сократилось. У лучших телевизоров таких артефактов немного.Вместо этого обработка ошибается с точки зрения безопасности, не позволяя соседним светодиодам становиться слишком разными по яркости, чтобы не возникло проблем, как вы видите здесь. Обратной стороной этого является меньшая «яркость» изображения, поскольку яркие объекты на темном фоне не выглядят такими яркими. Итак, в нашем примере с луной сама луна такая же тусклая, как фон, тогда как на полноматричном светодиодном ЖК-экране с локальным затемнением, на плазменном или OLED-экране она будет заметно ярче.

Все стороны
В настоящее время это менее распространенный метод, поскольку для него требуется больше светодиодов, чем для любого другого метода краевого освещения.Локальное затемнение может быть немного более точным, но все же ограничено большими зонами. Если бы мы использовали наш пример изображения луны, результат с подсветкой по краям со всех сторон выглядел бы точно так же, как сверху и снизу. Но с обычным видео (которое имеет больше источников света, чем просто луна), у него будет больше зон для работы, вроде этого:

Хотя все еще большие области, меньшие области экрана доступны (теоретически).

Раньше все стороны были наиболее распространенным методом краевого освещения. Но по мере улучшения световодов и снижения затрат (чтобы сделать более дешевые светодиодные ЖК-дисплеи) этот метод стал довольно редким.

С подсветкой без местного затемнения (также называемого прямым освещением)

Если бы это было реальное изображение светодиодного ЖК-дисплея с прямой подсветкой, отдельных светодиодов было бы гораздо меньше. Кроме того, они будут выровнены симметрично. Надеюсь, общая идея передана. Джеффри Моррисон / CNET

Практически все ЖК-дисплеи со светодиодной подсветкой используют этот метод. Светодиоды расположены на задней панели телевизора лицом к вам, но нет никакой обработки для их индивидуального затемнения.Вместо этого они работают как однородная подсветка, как и большинство ЖК-дисплеев CCFL. Этот метод используется в самых дешевых светодиодных ЖК-дисплеях, как и в большинстве сверхмассивных светодиодных ЖК-дисплеев Sharp. Равномерность, как правило, лучше, чем у дисплеев с боковой подсветкой, но из-за отсутствия местного затемнения собственный коэффициент контрастности ограничен самой ЖК-панелью (которая обычно намного ниже, чем естественная контрастность плазменных телевизоров).

Подсветка с локальным затемнением
Это ультрасовременный ЖК-дисплей со светодиодной подсветкой, который по своим характеристикам не уступает лучшим плазменным панелям.Как и у телевизоров с прямым освещением, у них есть светодиоды за экраном (изображение выше для прямого освещения также служит наглядным пособием для этого типа). Аспект полного локального затемнения означает, что телевизор может затемнять зоны за темными областями экрана в довольно определенных областях, чтобы изображение действительно выделялось, резко увеличивая видимый коэффициент контрастности.

Здесь вы можете увидеть реальное изображение того, как выглядит полноразмерный светодиод с локальным затемнением, когда часть ЖК-дисплея не создает изображение. Если освещать только те области экрана, которые в этом нуждаются, контрастность резко возрастает.Джеффри Моррисон / CNET

Однако их в основном не существует. Elite от Sharp выглядит потрясающе, но вышла в 2011 году и не обновлялась (и слухов о замене на горизонте нет). В прошлом году LG LM9600 не был хорош, и LG еще не анонсировала каких-либо полноразмерных телевизоров с локальным затемнением на 2013 год. Единственным другим светодиодным ЖК-дисплеем с локальным затемнением был Sony HX950, который был отличным и до сих пор актуален.В своем обзоре Дэвид Кацмайер назвал это «лучший и, возможно, последний светодиодный телевизор с локальным затемнением, носящий имя Sony».

Двумя крупнейшими производителями телевизоров в США являются Samsung и Vizio, и за последние пару лет ни один из них не продал полноразмерных светодиодных телевизоров с локальным затемнением. На выставке CES 2013 единственный такой телевизор Samsung был анонсирован безумно дорогим Ultra HD дисплеем UN85S9, в то время как Vizio снова выбрала краевую подсветку для своего флагмана. Vizio утверждает, что некоторые из телевизоров 2013 года имеют локальное затемнение, но Дэвид Кацмайер недавно протестировал одну из таких моделей, E420i-A1, заявив: «Конечно, уровни черного становятся темнее, но я не желаю компромисса в деталях в тенях. сделать »и пришел к выводу, что его« локальное затемнение не делает ничего для улучшения качества изображения."

Итог
Светодиодные ЖК-дисплеи с боковой подсветкой выглядят круто и энергоэффективны, но имеют совершенно другой потенциал качества изображения. Поскольку коэффициент контрастности является наиболее важным фактором качества изображения, чем лучше локальное затемнение, тем лучше кажущийся коэффициент контрастности телевизора. Хотя локальное затемнение с задней подсветкой теоретически является лучшим, некоторые модели с боковой подсветкой (например, прошлогодний HX850) настолько хорошо справляются со своим неидеальным размещением светодиодов, что могут выглядеть фантастически.

Как я уже упоминал вверху, нет простого способа определить, просто взглянув на спецификации, какая подсветка есть у телевизора.Таким образом, невозможно сказать, насколько хорошим будет его локальное затемнение. Плохое локальное затемнение в худшем случае может быть просто маркетинговым преувеличением. В лучшем случае это немного улучшает картинку. Однако хорошее локальное затемнение может создать резкое изображение с большой кажущейся глубиной и реализмом. Иными словами, лучшие ЖК-дисплеи на рынке имеют лучшее локальное затемнение, что позволяет им конкурировать с плазменными панелями по качеству изображения. Обо всем этом будут рассказывать лучшие телевизионные обзоры, такие как кхм на CNET, так что вы не обманете себя, заплатив за «функцию», которая не более чем галочка в спецификации.


Есть вопрос для Джеффа? Во-первых, ознакомьтесь со всеми другими статьями, которые он написал по таким темам, как кабели HDMI, светодиодный ЖК-экран против плазмы, активный против пассивного 3D и многое другое. Остались вопросы? Отправьте ему электронное письмо! Он не скажет вам, какой телевизор купить, но может использовать ваше письмо в будущей статье. Вы также можете отправить ему сообщение в Twitter: @TechWriterGeoff.

Телевизор

Trashed получил светодиодную подсветку RGB

Это может быть неочевидно, если вы не разобрали их, но большинство телевизоров и мониторов, обозначенных как «светодиодные», представляют собой просто ЖК-панели, которые используют группу светодиодов для освещения сзади.Точно так же то, что обычно называют «ЖК-дисплеями», представляют собой ЖК-панели, в которых для освещения используются люминесцентные лампы. Чтобы получить настоящий светодиодный дисплей без отдельной подсветки, вам понадобится OLED. Смущенный? Добро пожаловать в мир потребительских технологий.

Принимая во внимание эти различия, взлом, который [Зенодилодон] недавно выполнил на сломанном «LED-телевизоре», действительно довольно гениален. Удалив мертвенно-белую светодиодную подсветку и заменив их светодиодными лентами RGB, он не только заставил телевизор снова работать, но и наделил его способностями изменения цвета.Идеально подходит для демонстрации музыкальных визуализаций или для того, чтобы начать следующий вечер фильма в разгаре с действительно странным показом Seven Samurai .

На видео после перерыва [Зенодилодон] начинает трансплантацию RGB, разбирая телевизор до основных частей. Оригинальные светодиоды были поджарены, так что они могли бы пойти прямо в мусорное ведро вместе со своей электроникой драйвера. Но сама ЖК-панель работала нормально (проверено путем прохождения через нее лазерной указки, чтобы увидеть, есть ли изображение), а пластиковые листы, рассеивающие светодиодную подсветку, были легко утилизированы.

Удалив старые светодиоды, [Zenodilodon] выложил свои новые полоски и припаял их к внешнему контроллеру. Он осторожно использовал все белые провода, так как беспокоился, что цветные провода могут отражать белый свет и быть заметными на дисплее. После включения телевизора он провел несколько демонстраций, чтобы показать, как изображение выглядит с включенными белыми светодиодами, а также некоторые интересные эффекты, которые можно было увидеть, когда светодиоды циклически меняют цвета.

Полоски RGB не освещают дисплей так же хорошо, как исходная подсветка, так как есть несколько очевидных темных пятен, и вы можете видеть некоторые горизонтальные линии на месте полос.Но [Зенодилодон] говорит, что в реальной жизни эффект не так уж и плох, и, учитывая, что это был дешевый телевизор, качество изображения, вероятно, никогда не было таким хорошим с самого начала.

С другой стороны, если вы обнаружите в мусоре светодиодный телевизор или монитор с треснувшим экраном, возможно, стоит забрать его домой, чтобы спасти его сверхъяркие белые светодиоды для ваших световых проектов.

[Спасибо Моррису за подсказку.]

Объяснение светодиодных и ЖК-телевизоров

| Какая разница?

Думаете собрать или модернизировать домашний кинотеатр? Необходимо учитывать множество факторов, но процесс часто начинается с одного важного вопроса: какой телевизор выбрать? Современные передовые телевизионные технологии, такие как популярные OLED-дисплеи от LG или QLED-панели от Samsung, могут привлечь много внимания, но по-прежнему могут стоить немалые деньги.До тех пор, пока в целом OLED и QLED-панели не станут более доступными, светодиодные и ЖК-телевизоры по-прежнему будут оставаться жизнеспособным и качественным вариантом для людей с ограниченным бюджетом.

Но в чем разница? Это вопрос, который мы часто слышим от покупателей домашнего кинотеатра, которых сбивает с толку весь жаргон и аббревиатуры. Вот быстрый ответ: LED TV - это LCD TV, но то, как определение каждого термина стало настолько запутанным, может стать сюрпризом.

Подробнее

LED и LCD: вместе навсегда

Несмотря на то, что у LED TV другой акроним, это просто особый тип ЖК-телевизоров, в которых используется жидкокристаллический дисплей (LCD) для управления отображением света на экране.Эти панели обычно состоят из двух листов поляризующего материала с жидкокристаллическим раствором между ними. Когда электрический ток проходит через жидкость, он заставляет кристаллы выравниваться, так что свет может (или не может) проходить. Думайте об этом как о ставне, которая либо пропускает свет, либо блокирует его.

Поскольку и светодиодные, и ЖК-телевизоры основаны на ЖК-технологии, остается вопрос: в чем разница между и ? Собственно, дело в том, какая разница между и .В более старых ЖК-телевизорах для освещения использовались люминесцентные лампы с холодным катодом (CCFL), тогда как в светодиодных ЖК-телевизорах для освещения экрана использовался массив более эффективных светодиодов (LED) меньшего размера.

Поскольку технология стала лучше, все ЖК-телевизоры теперь используют светодиодную подсветку и в просторечии считаются светодиодными телевизорами. Для тех, кто заинтересован, мы подробнее рассмотрим подсветку ниже, или вы можете перейти к разделу «Локальное затемнение».

Подсветка

В ЖК-телевизорах используются три основных формы подсветки: CCFL-подсветка, полноразмерная светодиодная подсветка и светодиодная боковая подсветка.Каждая из этих технологий освещения во многом отличается друг от друга. Давайте углубимся в каждую.

CCFL Подсветка

Подсветка

CCFL - это более старая, ныне заброшенная форма технологии отображения, в которой серия ламп с холодным катодом расположена внутри телевизора за ЖК-дисплеем. Свет освещает кристаллы довольно равномерно, что означает, что все области изображения будут иметь одинаковый уровень яркости. Это влияет на некоторые аспекты качества изображения, которые мы обсудим более подробно ниже.Поскольку CCFL больше, чем массивы светодиодов, ЖК-телевизоры на основе CCFL толще ЖК-телевизоров со светодиодной подсветкой.

Подсветка полного массива

Подсветка с полным массивом заменяет устаревшие CCFL на массив светодиодов, охватывающий заднюю часть экрана, состоящий из зон светодиодов, которые могут быть зажжены или затемнены в процессе, называемом локальным затемнением. Телевизоры с полноразмерной светодиодной подсветкой составляют здоровую часть рынка высококачественных светодиодных телевизоров, и не без оснований - с более точным и равномерным освещением они могут создавать лучшее качество изображения, чем когда-либо могли достичь ЖК-телевизоры CCFL, с лучшей энергоэффективностью.

Боковое освещение

Другой формой подсветки ЖК-экрана является светодиодная подсветка края. Как следует из названия, телевизоры с боковой подсветкой имеют светодиоды по краям экрана. Существует несколько различных конфигураций, включая светодиоды только внизу, светодиоды вверху и внизу, светодиоды слева и справа и светодиоды вдоль всех четырех краев. Эти разные конфигурации приводят к различиям в качестве изображения, но общая яркость по-прежнему превышает возможности ЖК-телевизоров CCFL. Хотя у краевого освещения есть некоторые недостатки по сравнению с дисплеями с полной или прямой подсветкой, результатом является краевое освещение, которое позволяет производителям изготавливать более тонкие телевизоры с меньшими затратами в производстве.

Чтобы лучше сократить разрыв в качестве локального затемнения между телевизорами с боковой подсветкой и полноразмерными телевизорами с задней подсветкой, такие производители, как Sony и Samsung, разработали собственные усовершенствованные формы боковой подсветки. Технология Sony известна как Slim Backlight Master Drive, а Samsung использует Infinite Array в своей линейке телевизоров QLED. Благодаря этому достигается тонкий форм-фактор, достижимый благодаря дизайну с боковой подсветкой и качеству локального затемнения, которые больше не уступают полноразмерной подсветке.

Что такое локальное затемнение?

Локальное затемнение - это функция светодиодных ЖК-телевизоров, в которой светодиодный источник света за ЖК-дисплеем затемняется и освещается в соответствии с требованиями изображения.ЖК-дисплеи не могут полностью предотвратить прохождение света даже во время темных сцен, поэтому затемнение самого источника света помогает создать более глубокий черный цвет и более впечатляющий контраст изображения. Это достигается путем выборочного затемнения светодиодов, когда эта конкретная часть изображения - или область - должна быть темной.

Локальное затемнение помогает светодиодным / ЖК-телевизорам более точно соответствовать качеству современных OLED-дисплеев, которые по своей природе обладают более высоким уровнем контрастности, чего не могли сделать ЖК-телевизоры CCFL.Качество местного затемнения варьируется в зависимости от того, какой тип подсветки используется вашим ЖК-дисплеем, сколько отдельных зон подсветки задействовано, а также от качества обработки. Вот обзор того, насколько эффективно локальное затемнение на ЖК-телевизорах каждого типа.

Полнодиапазонная и прямая локальная подсветка

Телевизоры

с полноразмерной задней подсветкой имеют наиболее точное локальное затемнение и, следовательно, обеспечивают наилучшую контрастность. Поскольку массив светодиодов охватывает всю заднюю часть ЖК-экрана, области обычно можно затемнить с большей точностью, чем на телевизорах с боковой подсветкой, а яркость имеет тенденцию быть равномерной по всему экрану.Впечатляющие серии P от Vizio - отличные примеры относительно доступных моделей, в которых используется многозонная полноразмерная подсветка с локальным затемнением.

«Прямое локальное затемнение» - это, по сути, то же самое, что и затемнение всего массива, только с меньшим количеством светодиодов, расположенных дальше друг от друга в матрице. Однако стоит отметить, что многие производители не различают «прямое локальное затемнение» и полное затемнение как две отдельные формы местного затемнения. Мы по-прежнему считаем важным отметить разницу, поскольку меньшее количество светодиодов, расположенных дальше друг от друга, не будет иметь такой же точности и согласованности, как полноразмерные дисплеи.

Боковое освещение

Поскольку при боковом освещении используются светодиоды, расположенные на краю или краях экрана для проецирования света на заднюю часть ЖК-экрана, а не непосредственно за ним, это может привести к появлению очень тонких блоков или полос более светлых пикселей внутри или вокруг области, которые должны быть темными. Локальное затемнение телевизоров с боковой подсветкой иногда может приводить к некоторой затемненности в темных областях по сравнению с полноразмерными светодиодными телевизорами. Следует также отметить, что не все телевизоры с боковой светодиодной подсветкой предлагают локальное затемнение, поэтому нередко можно увидеть светящиеся полосы по краям телевизора и меньшую яркость по направлению к центру экрана.

CCFL Подсветка

Поскольку в телевизорах с подсветкой CCFL не используются светодиоды, модели с этим стилем освещения не имеют возможности затемнения. Вместо этого ЖК-панель ЖК-дисплеев CCFL постоянно и равномерно освещается, что дает заметную разницу в качестве изображения по сравнению с ЖК-дисплеями со светодиодной подсветкой. Это особенно заметно в сценах с высокой контрастностью, поскольку темные участки изображения могут казаться слишком яркими или размытыми. При просмотре в хорошо освещенной комнате легче не заметить или пропустить разницу, но в темной комнате она будет, ну, в общем, яркой.

OLED против QLED

Как будто это уже не достаточно сбивает с толку, как только вы начнете исследовать мир современных дисплейных технологий, у вас возникнут новые акронимы. Чаще всего встречаются OLED и QLED.

Несмотря на похожее название, телевизоры OLED (на органических светодиодах) относятся к отдельной категории. У нас есть подробное руководство о различиях между дисплеями OLED и QLED, но вот краткий обзор.

В OLED-дисплее используется панель из органических соединений размером с пиксель, которые реагируют на электричество.Поскольку каждый крошечный пиксель (миллионы которых присутствуют в современных дисплеях) можно включать или выключать индивидуально, OLED-дисплеи называются «излучающими» дисплеями (то есть им не требуется подсветка). Они предлагают невероятно высокий коэффициент контрастности и лучшую точность на пиксель, чем любой другой тип дисплея на рынке.

Поскольку они не требуют отдельного источника света, OLED-дисплеи также удивительно тонкие - часто всего несколько миллиметров. OLED-панели часто используются в высококачественных телевизорах вместо светодиодных / ЖК-технологий, но это не значит, что светодиодные / ЖК-дисплеи не лишены собственной премиальной технологии.

QLED - это светодиодные / ЖК-телевизоры премиум-класса от Samsung. В отличие от OLED-дисплеев, QLED не является так называемой технологией эмиссионного дисплея (огни по-прежнему освещают пиксели QLED сзади). Однако телевизоры QLED оснащены обновленной технологией освещения по сравнению с обычными ЖК-дисплеями со светодиодной подсветкой в ​​виде материала с квантовыми точками (отсюда и буква Q в QLED), что повышает общую эффективность и яркость. Это обеспечивает более яркие оттенки серого и цвет, а также расширяет возможности HDR (расширенного динамического диапазона).

Ситуация может стать еще более запутанной в ближайшем будущем; Samsung разрабатывает технологию, сочетающую QLED и OLED, чтобы дать пользователям лучшее от обоих.

Дополнительное описание QLED и его функций можно найти в нашем списке лучших телевизоров, которые вы можете купить. Далее в статье сравниваются качества QLED и OLED-телевизоров; Тем не менее, мы также рекомендуем проверить наши OLED и QLED, чтобы бок о бок взглянуть на эти две первоклассные технологии.

Есть и другие дисплеи, с которыми нужно познакомиться, включая microLED и Mini-LED, которые представляют собой новейшие телевизионные технологии.Подумайте о том, чтобы сравнить эти две функции с текущими техническими лидерами в руководстве OLED против MicroLED и в нашем руководстве Mini-LED против QLED.

В мире телевизионных технологий никогда не бывает скучно. Тем не менее, благодаря этому подробному исследованию, мы надеемся, что вы почувствуете себя в силах принять осознанное решение о покупке и держать в напряжении своего продавца Best Buy.

Рекомендации редакции

Устранение неполадок подсветки iDevice - iFixit

Схемы подсветки во всех iDevices с ЖК-дисплеем (за исключением классических iPod или Nano) имеют общую архитектуру:

  • Микросхема питания генерирует сигнал подсветки.
  • Катушка индуктивности, обычно называемая «катушкой задней подсветки», усиливает сигнал.
  • Диод предотвращает обратное напряжение.
  • Ферритовый шарик фильтрует сигнал.
  • Ленточный кабель передает сигнал на светодиодную ленту подсветки.
  • Некоторые устройства имеют дополнительную микросхему драйвера подсветки.

Большая часть оборудования iPad / iPhone работает при напряжении от 1,8 до 5,2 В. Однако цепь подсветки работает при напряжении около 15–20 В. При таком более высоком напряжении компоненты подсветки более склонны к повреждению при коротком замыкании.Цепь подсветки высокого напряжения также подвержена коррозии из-за повреждения водой.

  • ЖК-экран - ЖК-экран может выйти из строя из-за падения, повреждения водой или просто из-за неисправной детали.
  • Фильтр подсветки - При коротком замыкании в цепи подсветки тонкий провод внутри фильтра обрывается, отключая питание светодиодов подсветки.
  • Диод подсветки - Как и фильтры подсветки, диод подсветки является хрупким элементом. В случаях, когда фильтр задней подсветки сильно перегорел, вы часто обнаруживаете, что диод тоже вышел из строя.Выход из строя диода при отсутствии повреждения фильтра случается редко, но может случиться.

Катушка индуктора редко является точкой отказа в современных iDevices.

Наиболее частая причина самонаведения короткого замыкания возникает при работе с устройством с подключенной батареей. Даже когда экран темный, в цепи подсветки есть напряжение. Скольжение пинцета или смещение разъема ЖК-дисплея могут привести к замыканию цепи подсветки на массу. (IPad mini особенно подвержен этой неисправности, так как простого извлечения или вставки гибкого кабеля в разъем под небольшим углом достаточно, чтобы соединить высоковольтный контакт подсветки с соседним контактом заземления.) Во избежание самоиндуцированных коротких замыканий всегда отключайте аккумулятор перед работой с устройством.

Другая причина короткого замыкания подсветки - неправильная процедура сборки. Экраны iPhone имеют пайку на гибком кабеле ЖК-дисплея, соединяющем более тонкий гибкий кабель подсветки, который питает светодиодную ленту. Во время изготовления устройства эти паяные соединения защищаются куском черной ленты, однако во время процесса восстановления экрана некоторые производители пренебрегают заменой ленты, накладывают ее смещенной или ненадежно.В результате экран изначально работает во время тестирования, но после установки металлического экрана ЖК-дисплея открытые паяные соединения касаются заземленной рамки, замыкая цепь задней подсветки.

Короткое замыкание подсветки может произойти, если защелка разъема ZIF, фиксирующего гибкую часть ЖК-дисплея, отсутствует. Шлейф ЖК-дисплея выдвигается под углом, и вывод высоковольтной подсветки соприкасается с выводом заземления, вызывая короткое замыкание.

Повреждение водой - частый источник проблем с подсветкой. Вода разъедает соединение контактов разъема ЖК-дисплея с контактной площадкой, что нарушает электрический путь к разъему и может повредить фильтр.

Отказ цепи подсветки также может произойти из-за повреждения электрических проводов на печатной плате. Если электрические дорожки, проложенные в плате, были случайно повреждены - например, из-за попытки закрепить плату слишком большим винтом, - схема подсветки не будет передавать питание на светодиоды подсветки.

Чтобы определить, "мертвое" устройство или просто неисправный экран, попробуйте подключить его к компьютеру. Если компьютер распознает устройство, проблема, вероятно, связана с ЖК-экраном или схемой подсветки.Кроме того, iPhone уведомит пользователя о проблеме с подсветкой, многократно воспроизводя звуковой сигнал и вибрируя.

Хорошая новость в том, что почти все сбои подсветки можно исправить. Как только поврежденный компонент обнаружен, его можно просто заменить. Если это не то, что вы можете сделать самостоятельно, позвоните в специализированный магазин по производству микроспайки и отправьте его для быстрого ремонта.

Что такое Mini LED? Объяснение технологии отображения на телевизоре

Mini LED находится в авангарде линейки телевизоров в этом году, такие как TCL, Philips, LG и Samsung, все стремящиеся к технологии подсветки телевизора - и даже Apple решила использовать технологию Mini LED в своем новом iPad Pro - но что именно это, и почему это должно вас волновать?

Mini LED - это в значительной степени телевизионный термин, но вы, вероятно, увидите его и в небольших устройствах в будущем, например, в iPad Pro 2021 года с мини-светодиодной подсветкой и даже в Nintendo Switch 2, по слухам, в одном месте с функцией Mini. Светодиодная техника тоже.Но рынок телевизоров - это то место, где происходит больше всего мини-светодиодов, и 2021 год станет для них самым большим годом.

Как следует из названия, Mini LED уменьшает размеры светодиодных модулей, обеспечивающих подсветку ЖК-экранов. Пиксели ЖК-дисплея не могут освещать сами себя, как OLED, поэтому им нужен источник света позади них, чтобы просвечивать, создавая необходимую яркость и цвет. Из-за этого дополнительного слоя задней подсветки пиксели ЖК-дисплея никогда не могут быть полностью выключены.

Таким образом, черным не только не хватает чернильного качества их OLED-эквивалентов, но, если подсветка ЖК-телевизора плохо реализована и / или плохо контролируется, может быть заметна неравномерность в том, как экран описывает то, что должно быть однородными областями черного.Рассмотрим финальные титры многих фильмов: черный экран с прокручивающимся вверх белым текстом. Очень часто ЖК-телевизор позволяет светящемуся ореолу окружать слова или позволяет подсветке «просачиваться» из углов экрана, превращая то, что должно быть черным, в мутно-серый.

Никто никогда не покупал телевизор из-за того, как он обрабатывает финальные титры фильма, это правда. Но именно из-за такого неровного качества изображения ЖК-технология все чаще выглядит несколько отсталой по сравнению с ее блестящим конкурентом OLED.

Тем не менее, возможно, ЖК-технология еще сможет занять место среди лучших телевизоров - и это через Mini LED.

Mini LED FAQ

  • Что такое Mini LED? Более эффективный и действенный способ подсветки ЖК-экрана.
  • В чем его преимущества? Более высокая точность подсветки и большая пиковая яркость.
  • Смогу ли я увидеть разницу? Мы так считаем. Улучшенные контрасты и более яркие изображения, как правило, выделяются.
  • Дорогие ли мини-светодиодные телевизоры? Все зависит от обстоятельств. TCL уже давно использует MIni LED и очень агрессивно оценивает свои телевизоры. И LG, и Philips намерены продавать свои мини-светодиодные телевизоры по цене меньше, чем эквивалентные им OLED-экраны.

(Изображение предоставлено Samsung)

Что такое Mini LED?

Mini LED - более эффективный и эффективный способ подсветки ЖК-экрана.

Официально диод размером не более 0,2 мм может быть классифицирован как «мини», но мы имеем дело с отраслью бытовой электроники, и вы можете ожидать, что слово «мини» будет использоваться довольно свободно.Однако основной принцип заключается в том, что диоды меньшего размера позволяют использовать большее количество светодиодов.

Установка большего количества светодиодных диодов меньшего размера за пикселями ЖК-дисплея означает, что изображения могут быть ярче. Это означает, что управление подсветкой может быть более целенаправленным и точным. Это должно обеспечить лучший контроль, что должно означать меньшее размытие подсветки и более сильную контрастность.

Почему Mini LED важен?

При эффективном развертывании мини-светодиодная подсветка должна позволить ЖК-панелям приблизиться к уровню производительности OLED, чем это было возможно раньше.Эти теоретические преимущества весьма убедительны.

И, конечно же, это без видимых проблем OLED: светодиодные / ЖК-технологии никогда не были предметом страшных историй, связанных с выжиганием экрана, и при этом они не становятся жертвой возможного, но неизбежного падения производительности, которое является ценой ' органический элемент OLED.

Конечно, успех Mini LED будет зависеть от способа реализации этой технологии. Производительность ЖК-экранов со светодиодной подсветкой с аналогичной ценой и аналогичной спецификацией сильно различается - достаточно беглого взгляда на наши многочисленные обзоры телевизоров, чтобы убедиться в этом.И если некоторым телевизорам не хватает контроля над несколькими десятками зон затемнения подсветки, можно ли ожидать, что они станут лучше, если у них будет контроль над тысячами?

Apple разрабатывает Mini LED для своего 12,9-дюймового iPad Pro 2021 с яркостью 600 нит, это только повысит осведомленность и шумиху вокруг этой технологии.

(Изображение предоставлено Philips)

Кто продаст мне мини-светодиодный телевизор?

Неустрашимый китайский производитель TCL быстро вышел из блоков и внедрил эту технологию в свои экраны, и теперь его примеру последовали и другие компании.LG, Philips и Samsung анонсировали линейки мини-светодиодов на 2021 год.

Линейка мини-светодиодов LG, получившая название «QNED», сразу же стала премиальным предложением ЖК-дисплеев, сочетающих мини-светодиоды с технологией квантовых точек. Он расположен над ЖК-дисплеями NanoCell, которые ранее были самыми популярными ЖК-телевизорами компании.

QNED99 - герой линейки. Это телевизор 8K, 120 Гц с полным локальным затемнением (тем лучше, чтобы продемонстрировать, на что способен Mini LED). Доступны варианты с диагональю 65, 75 и 86 дюймов.QNED95 заменяет 120 Гц панель QNED99 всего на 60 Гц, но сохраняет разрешение 8K и все другие технологические особенности, за исключением 86-дюймового размера.

Есть пара диапазонов 4K QNED, которые устроены аналогично. QNED90 имеет панель 120 Гц перед устройством локального затемнения Mini LED Full Array, в то время как QNED85 вместо этого обходится панелью 60 Гц.

Если некоторым телевизорам не хватает контроля над несколькими десятками зон затемнения подсветки, можно ли ожидать, что они станут лучше, если у них будет контроль над тысячами?

Компания Samsung называет Neo QLED своими светодиодными мини-телевизорами в этом году.Наряду с «микрослоем» для направления света мини-светодиодов (возможно, до 5000 отдельных диодов на один экран) через квантовые точки, Samsung разработала свои самые точные алгоритмы затемнения и распределения мощности на сегодняшний день.

Все это предвещает хорошие шансы на превосходство в линейке QN900A. Это экран 8K 120 Гц, доступный в размерах 65, 75 или 85 дюймов. QN800A сохраняет разрешение 8K и параметры выбора размера экрана - у него просто нет такой простой аудиосистемы, как у QN900A.

Флагманом 4K для Samsung являются QN95A и QN90A: это панели с частотой 120 Гц, и обе доступны с экранами размером 50, 55, 65, 75 и 85 дюймов. QN95A также оснащен блоком Samsung One Connect, который устраняет все требования к подключению непосредственно к экрану. Также есть QN85A, который сохраняет панель 120 Гц своих братьев и сестер, но не имеет такого количества зон затемнения или драйверов динамиков.

У Philips, конечно же, есть свой уникальный аргумент в пользу Mini LED: подсветка Ambilight.И 9639, и 9506 доступны в размерах 65 или 75 дюймов, и оба имеют четырехстороннюю подсветку Ambilight, а также мини-светодиодную подсветку. Как и в случае с LG, мини-телевизоры Philips со светодиодной подсветкой входят в серию телевизоров чуть ниже более дорогих моделей OLED.

Вентиляторы

TCL могут выбрать QLED серии 6 с Mini LED в США или грядущий C825 QLED в Великобритании, который будет стоить 1099 фунтов стерлингов за самый маленький 55-дюймовый размер.

(Изображение предоставлено Samsung)

Стоит ли покупать мини-светодиодный телевизор?

В конечном счете, есть несколько факторов, которые будут определять успех (или нет) отдельных мини-светодиодных телевизоров.Например, драйвер панели и движок обработки видео, которые установлены на телевизоре, будут иметь огромное значение для работы экрана - и если они будут безразличными компонентами, абсолютная сложность компоновки мини-светодиодов, вероятно, может создать больше, а скорее чем меньше, проблемы с подсветкой и контрастом.

Однако нам не придется слишком долго ждать, чтобы узнать это. Все объявления о начале года сделаны, специфика модельных рядов и цен начинает просачиваться вниз, и к середине года (самое позднее) у нас будут руки (и глаза) на достаточном количестве мини-светодиодных телевизоров, чтобы знать, а) эффективна ли технология и б) стоит ли ваших денег.

Лучшие предложения на сегодняшний день Samsung Q80T QLED TV

Amazon Prime Day сделок: все лучшие предложения смотрите прямо здесь. оканчивается на

Понимание и предотвращение компьютерного утомления глаз

Взгляд на экран с близкого расстояния может со временем вызвать утомление глаз. Компьютерный монитор может утомлять глаза быстрее, чем другие устройства, например телевизор. Так как же снизить утомляемость глаз? В EIZO мы исследовали причины усталости глаз, чтобы создать идеальные, удобные для глаз мониторы.

Светодиодная подсветка вызывает утомление глаз?

ЖК-мониторы используют подсветку для отображения изображений. Количество зарегистрированных случаев усталости глаз, вызванной мерцанием экрана, увеличилось с момента популяризации мониторов со светодиодной подсветкой. ЖК-мониторы могут даже повлиять на глаза людей, которые не замечают мерцания подсветки.

Как работает мерцание?

Мерцание - это результат затемнения подсветки (регулировки яркости). К ЖК-мониторам применяются 2 метода регулирования яркости: ШИМ (широтно-импульсная модуляция и постоянный ток)

.
ШИМ диммирование Управляет яркостью, циклически включая и выключая подсветку.
Плюсы Широкий диапазон регулировки яркости. Простая схемотехника.
Минусы Высокоскоростные циклы могут вызывать мерцание светодиодных экранов.
Диммирование постоянного тока Регулирует яркость, регулируя источник питания.
Плюсы Без мерцания.
Минусы Сложная цветопередача на темных изображениях. Сложная схемотехника.

Протестировано: PWM vs.DC

Мы провели эксперимент, чтобы выяснить, как пользователи испытывают мерцание.

Вы заметили мерцание?

Вы чувствовали усталость глаз?

И наконец, что было легче всего просматривать?

Источник: EIZO Corporation; Технология затемнения EyeCare - октябрь 2012 г.
- Результаты варьируются от человека к человеку.

Гибридный метод затемнения

В безрамочных мониторах FlexScan используется гибридное решение для регулирования яркости и устранения мерцания без каких-либо недостатков, таких как снижение стабильности цвета, даже при низких настройках яркости, как показано ниже.

- Высокая яркость: метод затемнения постоянным током
- Яркость от средней до низкой: метод затемнения с ШИМ


Кроме того, в некоторых моделях мониторы реализуют метод высокой ШИМ (более 10 000 Гц) и управление затемнением ШИМ со сдвигом фазы.

Информационный документ: семь эргономических характеристик сканеров FlexScan серии EV [PDF]

Яркий экран вызывает утомление глаз?

На первый взгляд яркий экран кажется четким и хорошо заметным.Однако слишком яркий экран - основная причина утомления глаз. С другой стороны, если дисплей слишком темный, его будет трудно увидеть, а также это усугубит утомляемость глаз. В EIZO мы протестировали эффекты нашего Auto EcoView, который автоматически регулирует яркость экрана до необходимого уровня в зависимости от окружающего освещения.

Вы заметили мерцание?


  • Датчик яркости ВЫКЛ: яркость 100%, датчик яркости ВКЛ: автоматическое управление (EcoView)

Источник: EIZO Corporation, Семь эргономических характеристик серии FlexScan EV.Декабрь 2015.

Автоматическая регулировка яркости

Датчик яркости Auto EcoView обнаруживает изменения внешней яркости в течение дня и автоматически настраивает экран на идеальный уровень яркости, чтобы обеспечить максимальный комфорт для глаз.

Влияет ли синий свет на качество сна?

Исследования показывают, что воздействие синего света, излучаемого электронными устройствами после захода солнца, влияет на сон.

Как уменьшить синий свет на ЖК-мониторе

Чтобы предотвратить утомление глаз, вызванное синим светом, EIZO проверила, насколько мы можем уменьшить количество излучаемого синего света, настроив монитор.

Понижение цветовой температуры

Снижение цветовой температуры приводит к смещению распределения света в сторону более длинных волн (более красноватых цветов). Когда мы меняем начальную цветовую температуру наших мониторов (6500-7000К) на 5000К...
синий Свет уменьшен на 20%

Снижение цветовой температуры и яркости

Общее потребление энергии снижается за счет снижения яркости монитора. Снижение яркости от самых высоких настроек до адекватного значения (прибл.20 кд / м 2 и цветовая температура 5000K) ...
уменьшает синий свет на 80%

Функция Circadian Dimming в специальном программном обеспечении Screen InStyle для безрамочных мониторов FlexScan автоматически изменяет цветовую температуру вашего монитора в течение дня.Поддерживайте естественный циркадный ритм своего тела, настроив монитор на постепенное уменьшение синего света в вечернее время, чтобы вам было легче спать.

Циркадное затемнение

Крепкий сон с меньшим количеством синего света

Светодиодный экран

A Mini может стать лучшим поводом для покупки нового iPad Pro

Примерно год до нас доходили слухи о том, что Apple стоит на пороге запуска некоторых продуктов с технологией мини-светодиодных дисплеев, и теперь, возможно, первый наконец-то появится.Последнее предположение предполагает, что по крайней мере одна из новых моделей iPad Pro будет иметь мини-светодиодный дисплей, чтобы еще больше отделить ее от iPad Air. Вот почему это может быть главной причиной для покупки нового iPad Pro.

Лучший ЖК-дисплей с подсветкой

Чтобы понять Mini LED, вы сначала должны знать основы работы традиционного ЖК-дисплея с подсветкой. Это то, что сегодня есть во всех наших iPad, MacBook и iMac.

Это может быть сложно, но, вкратце, есть подсветка (обычно белая) со слоем ЖК-дисплея поверх нее.Назначение ЖК-дисплеев - блокировать контролируемое количество света от задней подсветки. Над ЖК-дисплеями расположены цветные фильтры, которые меняют цвет на красный, зеленый или синий. Это основная структура, но современные ЖК-дисплеи имеют другие слои, такие как поляризаторы, антибликовые покрытия и так далее. Большой белый свет, покрытый кучей крошечных ЖК-дисплеев (по три на каждый пиксель), чтобы блокировать или пропускать различное количество света, и цветовой фильтр, чтобы сделать свет красным, зеленым или синим.

Технология Mini LED заменяет эту большую подсветку сеткой из множества крошечных подсветок.

Это изображение от Vizio иллюстрирует концепцию светодиодных матриц с локальным затемнением.

Я замалчиваю более тонкие моменты. Всего лота исключений. Например, в телевизорах широко используются массивы светодиодной подсветки большего размера с так называемым «локальным затемнением», и даже мини-телевизоры со светодиодной подсветкой уже представлены на рынке от таких брендов, как TCL. Apple Pro Display XDR - это почти миниатюрный светодиодный дисплей с 576 индивидуально управляемыми светодиодами подсветки (на типичном мини-светодиодном дисплее такого размера их могло бы быть несколько тысяч).

Итак, это вкратце Mini LED: вроде как Pro Display XDR, но с гораздо большей, меньшей, светодиодной подсветкой. У CNET есть хорошая статья, посвященная телевизорам. Принцип одинаков для всех мини-светодиодных дисплеев.

Точное локальное затемнение и HDR

Что именно для вас делает массив подсветки из тысяч крошечных светодиодов? Что ж, в традиционном ЖК-дисплее у вас может быть одна подсветка, равномерно освещающая весь дисплей. Он должен быть таким же ярким, как самые яркие белые пиксели на экране.Тогда ЖК-дисплеи перед ним будут блокировать некоторое количество света, чтобы сделать пиксели более темными.

С помощью набора светодиодов подсветки, как в Pro Display XDR, вы можете индивидуально регулировать яркость подсветки в сотнях крошечных «зон», а затем дополнительно регулировать яркость с помощью ЖК-слоя. Это улучшает контрастность и энергоэффективность, а также позволяет получить более темные уровни черного.

Pro Display XDR имеет сотни светодиодных подсветок, но их недостаточно, чтобы называться мини-светодиодным дисплеем.

Технология

Mini LED идет еще дальше, с тысячами или даже десятками тысяч действительно крошечных светодиодов, разделенных на сотни или тысячи зон освещения. Дисплей может управлять яркостью подсветки всего на несколько сотен пикселей.

Это дополнительно повышает энергоэффективность, а также позволяет более точно контролировать самые яркие и самые темные области экрана. Одна светодиодная подсветка может быть действительно яркой, не вызывая попадания света в темную область поблизости.

Вполне вероятно, что продукты Apple с мини-светодиодными дисплеями будут иметь более высокую пиковую и устойчивую яркость, хотя и не до уровня впечатляющих 1000 нит на Pro Display XDR и пиковых 1600 нит. Такие вещи выделяют много тепла и требуют значительного охлаждения. В сочетании с отличным уровнем черного это будет означать действительно высокий коэффициент контрастности и великолепное качество HDR.

Не то же самое, что Micro-LED

Есть еще одна технология с похожим названием: Micro-LED.Вероятно, что Micro-LED появится первым в Apple Watch из-за стоимости, это совсем не то же самое, что Mini LED.

Если вы прочитали описание Mini LED и подумали: «Почему бы им просто не сделать светодиоды такими маленькими, чтобы по одному на каждый субпиксель?» тогда вы попали в цель. Именно это и есть Micro-LED.

Micro-LED - это не Mini LED. Это вообще не ЖК-дисплей.

Micro-LED очень похож на OLED; самоизлучающая технология (то есть без подсветки).Это массив из гораздо меньших светодиодов, миллионы из которых на одном дисплее, каждый размером с отдельный подпиксель. Каждый Micro LED имеет красный, зеленый или синий цвет и просто светится ярче или тусклее, чтобы изменить цвет пикселя. Таким образом, нет необходимости в ЖК-слое или цветном фильтре.

Микро-светодиодные дисплеи

сейчас слишком дороги для широкого внедрения, но цены снижаются. В конечном итоге они должны предложить большие преимущества по сравнению с жидкокристаллическими или OLED-технологиями, включая сверхбыстрое время отклика, невероятную цветопередачу, высокую яркость, идеальные уровни черного и лучшую энергоэффективность - все это при более тонком дисплее.

Я профессионально писал о технологиях всю свою взрослую профессиональную жизнь - более 20 лет. Мне нравится выяснять, как устроена сложная технология, и объяснять это так, чтобы каждый мог понять.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *